
CherryPy Documentation
Release 10.0.1.dev2+ng34d9d70.d20170120

CherryPy Team

January 20, 2017

Contents

1 Foreword 1
1.1 Why CherryPy? . 1
1.2 Success Stories . 2

2 Installation 5
2.1 Requirements . 5
2.2 Supported python version . 5
2.3 Installing . 5
2.4 Run it . 6

3 Tutorials 9
3.1 Tutorial 1: A basic web application . 9
3.2 Tutorial 2: Different URLs lead to different functions . 10
3.3 Tutorial 3: My URLs have parameters . 11
3.4 Tutorial 4: Submit this form . 12
3.5 Tutorial 5: Track my end-user’s activity . 12
3.6 Tutorial 6: What about my javascripts, CSS and images? . 13
3.7 Tutorial 7: Give us a REST . 15
3.8 Tutorial 8: Make it smoother with Ajax . 17
3.9 Tutorial 9: Data is all my life . 19
3.10 Tutorial 10: Make it a modern single-page application with React.js 22
3.11 Tutorial 11: Organize my code . 25

4 Basics 27
4.1 The one-minute application example . 28
4.2 Hosting one or more applications . 28
4.3 Logging . 29
4.4 Configuring . 32
4.5 Cookies . 33
4.6 Using sessions . 34
4.7 Static content serving . 35
4.8 Dealing with JSON . 37
4.9 Authentication . 37
4.10 Favicon . 38

5 Advanced 41
5.1 Set aliases to page handlers . 41
5.2 RESTful-style dispatching . 42

i

5.3 Error handling . 44
5.4 Streaming the response body . 45
5.5 Response timeouts . 46
5.6 Deal with signals . 47
5.7 Securing your server . 47
5.8 Multiple HTTP servers support . 48
5.9 WSGI support . 48
5.10 WebSocket support . 49
5.11 Database support . 50
5.12 HTML Templating support . 50
5.13 Testing your application . 50

6 Configure 53
6.1 Architecture . 53
6.2 Declaration . 55
6.3 Namespaces . 57

7 Extend 61
7.1 Server-wide functions . 61
7.2 Per-request functions . 67
7.3 Tailored dispatchers . 70
7.4 Request body processors . 71

8 Deploy 73
8.1 Run as a daemon . 73
8.2 Run as a different user . 74
8.3 PID files . 74
8.4 Systemd socket activation . 74
8.5 Control via Supervisord . 74
8.6 SSL support . 75
8.7 WSGI servers . 76
8.8 Virtual Hosting . 79
8.9 Reverse-proxying . 80

9 Support 83
9.1 I have a question . 83
9.2 I have found a bug . 83
9.3 I have a feature request . 83
9.4 I want to converse . 83

10 Contribute 85
10.1 StackOverflow . 85
10.2 Filing Bug Reports . 85
10.3 Fixing Bugs . 85
10.4 Writing Pull Requests . 85

11 Testing 87

12 Glossary 89

13 History 91
13.1 v10.0.0 . 91
13.2 v9.0.0 . 91
13.3 v8.9.1 . 91
13.4 v8.9.0 . 91

ii

13.5 v8.8.0 . 92
13.6 v8.7.0 . 92
13.7 v8.6.0 . 92
13.8 v8.5.0 . 92
13.9 v8.4.0 . 92
13.10 v8.3.1 . 92
13.11 v8.3.0 . 93
13.12 v8.2.0 . 93
13.13 v8.1.3 . 93
13.14 v8.1.2 . 93
13.15 v8.1.1 . 93
13.16 v8.1.0 . 93
13.17 v8.0.1 . 94
13.18 v8.0.0 . 94
13.19 7.1.0 . 94
13.20 7.0.0 . 94
13.21 6.2.1 . 94
13.22 6.2.0 . 95
13.23 6.1.1 . 95
13.24 6.1.0 . 95
13.25 6.0.2 . 95
13.26 6.0.1 . 95
13.27 6.0.0 . 95
13.28 5.6.0 . 95
13.29 5.5.0 . 96
13.30 5.4.0 . 96
13.31 5.3.0 . 96
13.32 5.2.0 . 96
13.33 5.1.0 . 96
13.34 5.0.1 . 97
13.35 5.0.0 . 97
13.36 4.0.0 . 97
13.37 3.8.2 . 97
13.38 3.8.0 . 97
13.39 3.7.0 . 97
13.40 3.6.0 . 98
13.41 3.5.0 . 98
13.42 3.4.0 . 98
13.43 3.3.0 . 98

iii

iv

CHAPTER 1

Foreword

1.1 Why CherryPy?

CherryPy is among the oldest web framework available for Python, yet many people aren’t aware of its existence. One
of the reason for this is that CherryPy is not a complete stack with built-in support for a multi-tier architecture. It
doesn’t provide frontend utilities nor will it tell you how to speak with your storage. Instead, CherryPy’s take is to let
the developer make those decisions. This is a contrasting position compared to other well-known frameworks.

CherryPy has a clean interface and does its best to stay out of your way whilst providing a reliable scaffolding for you
to build from.

Typical use-cases for CherryPy go from regular web application with user frontends (think blogging, CMS, portals,
ecommerce) to web-services only.

Here are some reasons you would want to choose CherryPy:

1. Simplicity

Developing with CherryPy is a simple task. “Hello, world” is only a few lines long, and does not require the
developer to learn the entire (albeit very manageable) framework all at once. The framework is very pythonic;
that is, it follows Python’s conventions very nicely (code is sparse and clean).

Contrast this with J2EE and Python’s most popular and visible web frameworks: Django, Zope, Pylons, and
Turbogears. In all of them, the learning curve is massive. In these frameworks, “Hello, world” requires the
programmer to set up a large scaffold which spans multiple files and to type a lot of boilerplate code. CherryPy
succeeds because it does not include the bloat of other frameworks, allowing the programmer to write their web
application quickly while still maintaining a high level of organization and scalability.

CherryPy is also very modular. The core is fast and clean, and extension features are easy to write and plug in
using code or the elegant config system. The primary components (server, engine, request, response, etc.) are
all extendable (even replaceable) and well-managed.

In short, CherryPy empowers the developer to work with the framework, not against or around it.

2. Power

CherryPy leverages all of the power of Python. Python is a dynamic language which allows for rapid develop-
ment of applications. Python also has an extensive built-in API which simplifies web app development. Even
more extensive, however, are the third-party libraries available for Python. These range from object-relational
mappers to form libraries, to an automatic Python optimizer, a Windows exe generator, imaging libraries, email
support, HTML templating engines, etc. CherryPy applications are just like regular Python applications. Cher-
ryPy does not stand in your way if you want to use these brilliant tools.

CherryPy also provides tools and plugins, which are powerful extension points needed to develop world-class
web applications.

1

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

3. Maturity

Maturity is extremely important when developing a real-world application. Unlike many other web frameworks,
CherryPy has had many final, stable releases. It is fully bugtested, optimized, and proven reliable for real-world
use. The API will not suddenly change and break backwards compatibility, so your applications are assured to
continue working even through subsequent updates in the current version series.

CherryPy is also a “3.0” project: the first edition of CherryPy set the tone, the second edition made it work,
and the third edition makes it beautiful. Each version built on lessons learned from the previous, bringing the
developer a superior tool for the job.

4. Community

CherryPy has an devoted community that develops deployed CherryPy applications and are willing and ready to
assist you on the CherryPy mailing list or IRC (#cherrypy on OFTC). The developers also frequent the list and
often answer questions and implement features requested by the end-users.

5. Deployability

Unlike many other Python web frameworks, there are cost-effective ways to deploy your CherryPy application.

Out of the box, CherryPy includes its own production-ready HTTP server to host your application. CherryPy
can also be deployed on any WSGI-compliant gateway (a technology for interfacing numerous types of web
servers): mod_wsgi, FastCGI, SCGI, IIS, uwsgi, tornado, etc. Reverse proxying is also a common and easy way
to set it up.

In addition, CherryPy is pure-python and is compatible with Python 2.3. This means that CherryPy will run on
all major platforms that Python will run on (Windows, MacOSX, Linux, BSD, etc).

webfaction.com, run by the inventor of CherryPy, is a commercial web host that offers CherryPy hosting pack-
ages (in addition to several others).

6. It’s free!

All of CherryPy is licensed under the open-source BSD license, which means CherryPy can be used commer-
cially for ZERO cost.

7. Where to go from here?

Check out the tutorials to start enjoying the fun!

1.2 Success Stories

You are interested in CherryPy but you would like to hear more from people using it, or simply check out products or
application running it.

If you would like to have your CherryPy powered website or product listed here, contact us via our mailing list or IRC
(#cherrypy on OFTC).

1.2.1 Websites running atop CherryPy

Hulu Deejay and Hulu Sod - Hulu uses CherryPy for some projects. “The service needs to be very high performance.
Python, together with CherryPy, gunicorn, and gevent more than provides for this.”

Netflix - Netflix uses CherryPy as a building block in their infrastructure: “Restful APIs to large applications with
requests, providing web interfaces with CherryPy and Bottle, and crunching data with scipy.”

Urbanility - French website for local neighbourhood assets in Rennes, France.

2 Chapter 1. Foreword

https://www.webfaction.com
http://groups.google.com/group/cherrypy-users
http://www.oftc.net/oftc/
http://tech.hulu.com/blog/2013/03/13/python-and-hulu
http://gunicorn.org
http://techblog.netflix.com/2013/03/python-at-netflix.html
http://urbanility.com

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

MROP Supply - Webshop for industrial equipment, developed using CherryPy 3.2.2 utilizing Python 3.2, with libs:
Jinja2-2.6, davispuh-MySQL-for-Python-3-3403794, pyenchant-1.6.5 (for search spelling). “I’m coming over from
.net development and found Python and CherryPy to be surprisingly minimalistic. No unnecessary overhead - build
everything you need without the extra fluff. I’m a fan!”

CherryMusic - A music streaming server written in python: Stream your own music collection to all your devices!
CherryMusic is open source.

YouGov Global - International market research firm, conducts millions of surveys on CherryPy yearly.

Aculab Cloud - Voice and fax applications on the cloud. A simple telephony API for Python, C#, C++, VB, etc... The
website and all front-end and back-end web services are built with CherryPy, fronted by nginx (just handling the ssh
and reverse-proxy), and running on AWS in two regions.

Learnit Training - Dutch website for an IT, Management and Communication training company. Built on CherryPy
3.2.0 and Python 2.7.3, with oursql and DBUtils libraries, amongst others.

Linstic - Sticky Notes in your browser (with linking).

Almad’s Homepage - Simple homepage with blog.

Fight.Watch - Twitch.tv web portal for fighting games. Built on CherryPy 3.3.0 and Python 2.7.3 with Jinja 2.7.2 and
SQLAlchemy 0.9.4.

1.2.2 Products based on CherryPy

SABnzbd - Open Source Binary Newsreader written in Python.

Headphones - Third-party add-on for SABnzbd.

SickBeard - “Sick Beard is a PVR for newsgroup users (with limited torrent support). It watches for new episodes of
your favorite shows and when they are posted it downloads them, sorts and renames them, and optionally generates
metadata for them.”

TurboGears - The rapid web development megaframework. Turbogears 1.x used Cherrypy. “CherryPy is the under-
lying application server for TurboGears. It is responsible for taking the requests from the userâC™s browser, parses
them and turns them into calls into the Python code of the web application. Its role is similar to application servers
used in other programming languages”.

Indigo - “An intelligent home control server that integrates home control hardware modules to provide control of your
home. Indigo’s built-in Web server and client/server architecture give you control and access to your home remotely
from other Macs, PCs, internet tablets, PDAs, and mobile phones.”

SlikiWiki - Wiki built on CherryPy and featuring WikiWords, automatic backlinking, site map generation, full text
search, locking for concurrent edits, RSS feed embedding, per page access control lists, and page formatting using
PyTextile markup.”

read4me - read4me is a Python feed-reading web service.

Firebird QA tools - Firebird QA tools are based on CherryPy.

salt-api - A REST API for Salt, the infrastructure orchestration tool.

1.2.3 Products inspired by CherryPy

OOWeb - “OOWeb is a lightweight, embedded HTTP server for Java applications that maps objects to URL direc-
tories, methods to pages and form/querystring arguments as method parameters. OOWeb was originally inspired by
CherryPy.”

1.2. Success Stories 3

https://www.mropsupply.com
http://jinja.pocoo.org/docs
http://www.fomori.org/cherrymusic
http://www.yougov.com
http://cloud.aculab.com
http://www.learnit.nl
http://pythonhosted.org/oursql
http://www.webwareforpython.org/DBUtils
http://linstic.com
http://www.almad.net
http://fight.watch
http://sabnzbd.org
https://github.com/rembo10/headphones
http://sickbeard.com
http://www.turbogears.org
http://www.perceptiveautomation.com/indigo/index.html
http://www.sf.net/projects/slikiwiki
http://sourceforge.net/projects/read4me
http://www.firebirdsql.org/en/quality-assurance
https://github.com/saltstack/salt-api
http://ooweb.sourceforge.net/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

4 Chapter 1. Foreword

CHAPTER 2

Installation

CherryPy is a pure Python library. This has various consequences:

• It can run anywhere Python runs

• It does not require a C compiler

• It can run on various implementations of the Python language: CPython, IronPython, Jython and PyPy

Contents

• Installation
– Requirements
– Supported python version
– Installing

* Test your installation
– Run it

* cherryd
· Command-Line Options

2.1 Requirements

CherryPy does not have any mandatory requirements. However certain features it comes with will require you install
certain packages. To simplify installing additional dependencies CherryPy enables you to specify extras in your re-
quirements (e.g. cherrypy[json,routes_dispatcher,ssl]): - doc – for documentation related stuff - json
– for custom JSON processing library - routes_dispatcher – routes for declarative URL mapping dispatcher - ssl – for
OpenSSL bindings, useful in Python environments not having the builtin ssl module - testing - memcached_session
– enables memcached backend session - xcgi

2.2 Supported python version

CherryPy supports Python 2.7 through to 3.5.

2.3 Installing

CherryPy can be easily installed via common Python package managers such as setuptools or pip.

5

http://python.org/
http://ironpython.net/
http://www.jython.org/
http://pypy.org/
https://github.com/simplejson/simplejson
http://routes.readthedocs.org/en/latest/
https://github.com/pyca/pyopenssl
https://docs.python.org/3/library/ssl.html#module-ssl
https://github.com/linsomniac/python-memcached

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

$ easy_install cherrypy

$ pip install cherrypy

You may also get the latest CherryPy version by grabbing the source code from Github:

$ git clone https://github.com/cherrypy/cherrypy
$ cd cherrypy
$ python setup.py install

2.3.1 Test your installation

CherryPy comes with a set of simple tutorials that can be executed once you have deployed the package.

$ python -m cherrypy.tutorial.tut01_helloworld

Point your browser at http://127.0.0.1:8080 and enjoy the magic.

Once started the above command shows the following logs:

[15/Feb/2014:21:51:22] ENGINE Listening for SIGHUP.
[15/Feb/2014:21:51:22] ENGINE Listening for SIGTERM.
[15/Feb/2014:21:51:22] ENGINE Listening for SIGUSR1.
[15/Feb/2014:21:51:22] ENGINE Bus STARTING
[15/Feb/2014:21:51:22] ENGINE Started monitor thread 'Autoreloader'.
[15/Feb/2014:21:51:22] ENGINE Started monitor thread '_TimeoutMonitor'.
[15/Feb/2014:21:51:22] ENGINE Serving on http://127.0.0.1:8080
[15/Feb/2014:21:51:23] ENGINE Bus STARTED

We will explain what all those lines mean later on, but suffice to know that once you see the last two lines, your server
is listening and ready to receive requests.

2.4 Run it

During development, the easiest path is to run your application as follow:

$ python myapp.py

As long as myapp.py defines a “__main__” section, it will run just fine.

2.4.1 cherryd

Another way to run the application is through the cherryd script which is installed along side CherryPy.

Note: This utility command will not concern you if you embed your application with another framework.

Command-Line Options

-c, --config
Specify config file(s)

6 Chapter 2. Installation

http://127.0.0.1:8080

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

-d
Run the server as a daemon

-e, --environment
Apply the given config environment (defaults to None)

-f
Start a FastCGI server instead of the default HTTP server

-s
Start a SCGI server instead of the default HTTP server

-i, --import
Specify modules to import

-p, --pidfile
Store the process id in the given file (defaults to None)

-P, --Path
Add the given paths to sys.path

2.4. Run it 7

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

8 Chapter 2. Installation

CHAPTER 3

Tutorials

This tutorial will walk you through basic but complete CherryPy applications that will show you common concepts as
well as slightly more advanced ones.

Contents

• Tutorials
– Tutorial 1: A basic web application
– Tutorial 2: Different URLs lead to different functions
– Tutorial 3: My URLs have parameters
– Tutorial 4: Submit this form
– Tutorial 5: Track my end-user’s activity
– Tutorial 6: What about my javascripts, CSS and images?
– Tutorial 7: Give us a REST
– Tutorial 8: Make it smoother with Ajax
– Tutorial 9: Data is all my life
– Tutorial 10: Make it a modern single-page application with React.js
– Tutorial 11: Organize my code

* Dispatchers
* Tools
* Plugins

3.1 Tutorial 1: A basic web application

The following example demonstrates the most basic application you could write with CherryPy. It starts a server and
hosts an application that will be served at request reaching http://127.0.0.1:8080/

1 import cherrypy
2

3

4 class HelloWorld(object):
5 @cherrypy.expose
6 def index(self):
7 return "Hello world!"
8

9

10 if __name__ == '__main__':
11 cherrypy.quickstart(HelloWorld())

9

http://127.0.0.1:8080/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Store this code snippet into a file named tut01.py and execute it as follows:

$ python tut01.py

This will display something along the following:

1 [24/Feb/2014:21:01:46] ENGINE Listening for SIGHUP.
2 [24/Feb/2014:21:01:46] ENGINE Listening for SIGTERM.
3 [24/Feb/2014:21:01:46] ENGINE Listening for SIGUSR1.
4 [24/Feb/2014:21:01:46] ENGINE Bus STARTING
5 CherryPy Checker:
6 The Application mounted at '' has an empty config.
7

8 [24/Feb/2014:21:01:46] ENGINE Started monitor thread 'Autoreloader'.
9 [24/Feb/2014:21:01:46] ENGINE Started monitor thread '_TimeoutMonitor'.

10 [24/Feb/2014:21:01:46] ENGINE Serving on http://127.0.0.1:8080
11 [24/Feb/2014:21:01:46] ENGINE Bus STARTED

This tells you several things. The first three lines indicate the server will handle signal for you. The next line tells
you the current state of the server, as that point it is in STARTING stage. Then, you are notified your application has
no specific configuration set to it. Next, the server starts a couple of internal utilities that we will explain later. Finally,
the server indicates it is now ready to accept incoming communications as it listens on the address 127.0.0.1:8080. In
other words, at that stage your application is ready to be used.

Before moving on, let’s discuss the message regarding the lack of configuration. By default, CherryPy has a feature
which will review the syntax correctness of settings you could provide to configure the application. When none are
provided, a warning message is thus displayed in the logs. That log is harmless and will not prevent CherryPy from
working. You can refer to the documentation above to understand how to set the configuration.

3.2 Tutorial 2: Different URLs lead to different functions

Your applications will obviously handle more than a single URL. Let’s imagine you have an application that generates
a random string each time it is called:

1 import random
2 import string
3

4 import cherrypy
5

6

7 class StringGenerator(object):
8 @cherrypy.expose
9 def index(self):

10 return "Hello world!"
11

12 @cherrypy.expose
13 def generate(self):
14 return ''.join(random.sample(string.hexdigits, 8))
15

16

17 if __name__ == '__main__':
18 cherrypy.quickstart(StringGenerator())

Save this into a file named tut02.py and run it as follows:

$ python tut02.py

10 Chapter 3. Tutorials

https://docs.python.org/3/library/signal.html#module-signal

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Go now to http://localhost:8080/generate and your browser will display a random string.

Let’s take a minute to decompose what’s happening here. This is the URL that you have typed into your browser:
http://localhost:8080/generate

This URL contains various parts:

• http:// which roughly indicates it’s a URL using the HTTP protocol (see RFC 2616).

• localhost:8080 is the server’s address. It’s made of a hostname and a port.

• /generate which is the path segment of the URL. This is what CherryPy uses to locate an exposed function or
method to respond.

Here CherryPy uses the index() method to handle / and the generate() method to handle /generate

3.3 Tutorial 3: My URLs have parameters

In the previous tutorial, we have seen how to create an application that could generate a random string. Let’s now
assume you wish to indicate the length of that string dynamically.

1 import random
2 import string
3

4 import cherrypy
5

6

7 class StringGenerator(object):
8 @cherrypy.expose
9 def index(self):

10 return "Hello world!"
11

12 @cherrypy.expose
13 def generate(self, length=8):
14 return ''.join(random.sample(string.hexdigits, int(length)))
15

16

17 if __name__ == '__main__':
18 cherrypy.quickstart(StringGenerator())

Save this into a file named tut03.py and run it as follows:

$ python tut03.py

Go now to http://localhost:8080/generate?length=16 and your browser will display a generated string of length 16.
Notice how we benefit from Python’s default arguments’ values to support URLs such as http://localhost:8080/generate
still.

In a URL such as this one, the section after ? is called a query-string. Traditionally, the query-string is used to
contextualize the URL by passing a set of (key, value) pairs. The format for those pairs is key=value. Each pair being
separated by a & character.

Notice how we have to convert the given length value to an integer. Indeed, values are sent out from the client to our
server as strings.

Much like CherryPy maps URL path segments to exposed functions, query-string keys are mapped to those exposed
function parameters.

3.3. Tutorial 3: My URLs have parameters 11

http://localhost:8080/generate
http://localhost:8080/generate
https://tools.ietf.org/html/rfc2616.html
http://localhost:8080/generate?length=16
http://localhost:8080/generate

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

3.4 Tutorial 4: Submit this form

CherryPy is a web framework upon which you build web applications. The most traditional shape taken by applications
is through an HTML user-interface speaking to your CherryPy server.

Let’s see how to handle HTML forms via the following example.

1 import random
2 import string
3

4 import cherrypy
5

6

7 class StringGenerator(object):
8 @cherrypy.expose
9 def index(self):

10 return """<html>
11 <head></head>
12 <body>
13 <form method="get" action="generate">
14 <input type="text" value="8" name="length" />
15 <button type="submit">Give it now!</button>
16 </form>
17 </body>
18 </html>"""
19

20 @cherrypy.expose
21 def generate(self, length=8):
22 return ''.join(random.sample(string.hexdigits, int(length)))
23

24

25 if __name__ == '__main__':
26 cherrypy.quickstart(StringGenerator())

Save this into a file named tut04.py and run it as follows:

$ python tut04.py

Go now to http://localhost:8080/ and your browser and this will display a simple input field to indicate the length of
the string you want to generate.

Notice that in this example, the form uses the GET method and when you pressed the Give it now! button, the form
is sent using the same URL as in the previous tutorial. HTML forms also support the POST method, in that case
the query-string is not appended to the URL but it sent as the body of the client’s request to the server. However,
this would not change your application’s exposed method because CherryPy handles both the same way and uses the
exposed’s handler parameters to deal with the query-string (key, value) pairs.

3.5 Tutorial 5: Track my end-user’s activity

It’s not uncommon that an application needs to follow the user’s activity for a while. The usual mechanism is to use a
session identifier that is carried during the conversation between the user and your application.

1 import random
2 import string
3

4 import cherrypy

12 Chapter 3. Tutorials

http://localhost:8080/
http://en.wikipedia.org/wiki/Session_(computer_science)#HTTP_session_token

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

5

6

7 class StringGenerator(object):
8 @cherrypy.expose
9 def index(self):

10 return """<html>
11 <head></head>
12 <body>
13 <form method="get" action="generate">
14 <input type="text" value="8" name="length" />
15 <button type="submit">Give it now!</button>
16 </form>
17 </body>
18 </html>"""
19

20 @cherrypy.expose
21 def generate(self, length=8):
22 some_string = ''.join(random.sample(string.hexdigits, int(length)))
23 cherrypy.session['mystring'] = some_string
24 return some_string
25

26 @cherrypy.expose
27 def display(self):
28 return cherrypy.session['mystring']
29

30

31 if __name__ == '__main__':
32 conf = {
33 '/': {
34 'tools.sessions.on': True
35 }
36 }
37 cherrypy.quickstart(StringGenerator(), '/', conf)

Save this into a file named tut05.py and run it as follows:

$ python tut05.py

In this example, we generate the string as in the previous tutorial but also store it in the current session. If you go to
http://localhost:8080/, generate a random string, then go to http://localhost:8080/display, you will see the string you
just generated.

The lines 30-34 show you how to enable the session support in your CherryPy application. By default, CherryPy will
save sessions in the process’s memory. It supports more persistent backends as well.

3.6 Tutorial 6: What about my javascripts, CSS and images?

Web applications are usually also made of static content such as javascript, CSS files or images. CherryPy provides
support to serve static content to end-users.

Let’s assume, you want to associate a stylesheet with your application to display a blue background color (why not?).

First, save the following stylesheet into a file named style.css and stored into a local directory public/css.

1 body {
2 background-color: blue;
3 }

3.6. Tutorial 6: What about my javascripts, CSS and images? 13

http://localhost:8080/
http://localhost:8080/display

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Now let’s update the HTML code so that we link to the stylesheet using the http://localhost:8080/static/css/style.css
URL.

1 import os, os.path
2 import random
3 import string
4

5 import cherrypy
6

7

8 class StringGenerator(object):
9 @cherrypy.expose

10 def index(self):
11 return """<html>
12 <head>
13 <link href="/static/css/style.css" rel="stylesheet">
14 </head>
15 <body>
16 <form method="get" action="generate">
17 <input type="text" value="8" name="length" />
18 <button type="submit">Give it now!</button>
19 </form>
20 </body>
21 </html>"""
22

23 @cherrypy.expose
24 def generate(self, length=8):
25 some_string = ''.join(random.sample(string.hexdigits, int(length)))
26 cherrypy.session['mystring'] = some_string
27 return some_string
28

29 @cherrypy.expose
30 def display(self):
31 return cherrypy.session['mystring']
32

33

34 if __name__ == '__main__':
35 conf = {
36 '/': {
37 'tools.sessions.on': True,
38 'tools.staticdir.root': os.path.abspath(os.getcwd())
39 },
40 '/static': {
41 'tools.staticdir.on': True,
42 'tools.staticdir.dir': './public'
43 }
44 }
45 cherrypy.quickstart(StringGenerator(), '/', conf)

Save this into a file named tut06.py and run it as follows:

$ python tut06.py

Going to http://localhost:8080/, you should be greeted by a flashy blue color.

CherryPy provides support to serve a single file or a complete directory structure. Most of the time, this is what you’ll
end up doing so this is what the code above demonstrates. First, we indicate the root directory of all of our static
content. This must be an absolute path for security reason. CherryPy will complain if you provide only relative paths
when looking for a match to your URLs.

14 Chapter 3. Tutorials

http://localhost:8080/static/css/style.css
http://localhost:8080/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Then we indicate that all URLs which path segment starts with /static will be served as static content. We map that
URL to the public directory, a direct child of the root directory. The entire sub-tree of the public directory will be
served as static content. CherryPy will map URLs to path within that directory. This is why /static/css/style.css is
found in public/css/style.css.

3.7 Tutorial 7: Give us a REST

It’s not unusual nowadays that web applications expose some sort of datamodel or computation functions. Without
going into its details, one strategy is to follow the REST principles edicted by Roy T. Fielding.

Roughly speaking, it assumes that you can identify a resource and that you can address that resource through that
identifier.

“What for?” you may ask. Well, mostly, these principles are there to ensure that you decouple, as best as you can,
the entities your application expose from the way they are manipulated or consumed. To embrace this point of view,
developers will usually design a web API that expose pairs of (URL, HTTP method, data, constraints).

Note: You will often hear REST and web API together. The former is one strategy to provide the latter. This tutorial
will not go deeper in that whole web API concept as it’s a much more engaging subject, but you ought to read more
about it online.

Lets go through a small example of a very basic web API mildly following REST principles.

1 import random
2 import string
3

4 import cherrypy
5

6

7 @cherrypy.expose
8 class StringGeneratorWebService(object):
9

10 @cherrypy.tools.accept(media='text/plain')
11 def GET(self):
12 return cherrypy.session['mystring']
13

14 def POST(self, length=8):
15 some_string = ''.join(random.sample(string.hexdigits, int(length)))
16 cherrypy.session['mystring'] = some_string
17 return some_string
18

19 def PUT(self, another_string):
20 cherrypy.session['mystring'] = another_string
21

22 def DELETE(self):
23 cherrypy.session.pop('mystring', None)
24

25

26 if __name__ == '__main__':
27 conf = {
28 '/': {
29 'request.dispatch': cherrypy.dispatch.MethodDispatcher(),
30 'tools.sessions.on': True,
31 'tools.response_headers.on': True,
32 'tools.response_headers.headers': [('Content-Type', 'text/plain')],

3.7. Tutorial 7: Give us a REST 15

http://www.ibm.com/developerworks/library/ws-restful/index.html

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

33 }
34 }
35 cherrypy.quickstart(StringGeneratorWebService(), '/', conf)

Save this into a file named tut07.py and run it as follows:

$ python tut07.py

Before we see it in action, let’s explain a few things. Until now, CherryPy was creating a tree of exposed methods that
were used to match URLs. In the case of our web API, we want to stress the role played by the actual requests’ HTTP
methods. So we created methods that are named after them and they are all exposed at once by decorating the class
itself with cherrypy.expose.

However, we must then switch from the default mechanism of matching URLs to method for one that is aware of the
whole HTTP method shenanigan. This is what goes on line 27 where we create a MethodDispatcher instance.

Then we force the responses content-type to be text/plain and we finally ensure that GET requests will only be re-
sponded to clients that accept that content-type by having a Accept: text/plain header set in their request. However, we
do this only for that HTTP method as it wouldn’t have much meaning on the other methods.

For the purpose of this tutorial, we will be using a Python client rather than your browser as we wouldn’t be able to
actually try our web API otherwise.

Please install requests through the following command:

$ pip install requests

Then fire up a Python terminal and try the following commands:

1 >>> import requests
2 >>> s = requests.Session()
3 >>> r = s.get('http://127.0.0.1:8080/')
4 >>> r.status_code
5 500
6 >>> r = s.post('http://127.0.0.1:8080/')
7 >>> r.status_code, r.text
8 (200, u'04A92138')
9 >>> r = s.get('http://127.0.0.1:8080/')

10 >>> r.status_code, r.text
11 (200, u'04A92138')
12 >>> r = s.get('http://127.0.0.1:8080/', headers={'Accept': 'application/json'})
13 >>> r.status_code
14 406
15 >>> r = s.put('http://127.0.0.1:8080/', params={'another_string': 'hello'})
16 >>> r = s.get('http://127.0.0.1:8080/')
17 >>> r.status_code, r.text
18 (200, u'hello')
19 >>> r = s.delete('http://127.0.0.1:8080/')
20 >>> r = s.get('http://127.0.0.1:8080/')
21 >>> r.status_code
22 500

The first and last 500 responses stem from the fact that, in the first case, we haven’t yet generated a string through
POST and, on the latter case, that it doesn’t exist after we’ve deleted it.

Lines 12-14 show you how the application reacted when our client requested the generated string as a JSON format.
Since we configured the web API to only support plain text, it returns the appropriate HTTP error code.

Note: We use the Session interface of requests so that it takes care of carrying the session id stored in the request

16 Chapter 3. Tutorials

http://www.python-requests.org/en/latest/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.python-requests.org/en/latest/user/advanced/#session-objects

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

cookie in each subsequent request. That is handy.

Important: It’s all about RESTful URLs these days, isn’t it?

It is likely your URL will be made of dynamic parts that you will not be able to match to page handlers. For example,
/library/12/book/15 cannot be directly handled by the default CherryPy dispatcher since the segments 12 and
15 will not be matched to any Python callable.

This can be easily workaround with two handy CherryPy features explained in the advanced section.

3.8 Tutorial 8: Make it smoother with Ajax

In the recent years, web applications have moved away from the simple pattern of “HTML forms + refresh the whole
page”. This traditional scheme still works very well but users have become used to web applications that don’t refresh
the entire page. Broadly speaking, web applications carry code performed client-side that can speak with the backend
without having to refresh the whole page.

This tutorial will involve a little more code this time around. First, let’s see our CSS stylesheet located in pub-
lic/css/style.css.

1 body {
2 background-color: blue;
3 }
4

5 #the-string {
6 display: none;
7 }

We’re adding a simple rule about the element that will display the generated string. By default, let’s not show it up.
Save the following HTML code into a file named index.html.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <link href="/static/css/style.css" rel="stylesheet">
5 <script src="http://code.jquery.com/jquery-2.0.3.min.js"></script>
6 <script type="text/javascript">
7 $(document).ready(function() {
8

9 $("#generate-string").click(function(e) {
10 $.post("/generator", {"length": $("input[name='length']").val()})
11 .done(function(string) {
12 $("#the-string").show();
13 $("#the-string input").val(string);
14 });
15 e.preventDefault();
16 });
17

18 $("#replace-string").click(function(e) {
19 $.ajax({
20 type: "PUT",
21 url: "/generator",
22 data: {"another_string": $("#the-string input").val()}
23 })
24 .done(function() {

3.8. Tutorial 8: Make it smoother with Ajax 17

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

25 alert("Replaced!");
26 });
27 e.preventDefault();
28 });
29

30 $("#delete-string").click(function(e) {
31 $.ajax({
32 type: "DELETE",
33 url: "/generator"
34 })
35 .done(function() {
36 $("#the-string").hide();
37 });
38 e.preventDefault();
39 });
40

41 });
42 </script>
43 </head>
44 <body>
45 <input type="text" value="8" name="length"/>
46 <button id="generate-string">Give it now!</button>
47 <div id="the-string">
48 <input type="text" />
49 <button id="replace-string">Replace</button>
50 <button id="delete-string">Delete it</button>
51 </div>
52 </body>
53 </html>

We’ll be using the jQuery framework out of simplicity but feel free to replace it with your favourite tool. The page
is composed of simple HTML elements to get user input and display the generated string. It also contains client-side
code to talk to the backend API that actually performs the hard work.

Finally, here’s the application’s code that serves the HTML page above and responds to requests to generate strings.
Both are hosted by the same application server.

1 import os, os.path
2 import random
3 import string
4

5 import cherrypy
6

7

8 class StringGenerator(object):
9 @cherrypy.expose

10 def index(self):
11 return open('index.html')
12

13

14 @cherrypy.expose
15 class StringGeneratorWebService(object):
16

17 @cherrypy.tools.accept(media='text/plain')
18 def GET(self):
19 return cherrypy.session['mystring']
20

21 def POST(self, length=8):
22 some_string = ''.join(random.sample(string.hexdigits, int(length)))

18 Chapter 3. Tutorials

http://jquery.com/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

23 cherrypy.session['mystring'] = some_string
24 return some_string
25

26 def PUT(self, another_string):
27 cherrypy.session['mystring'] = another_string
28

29 def DELETE(self):
30 cherrypy.session.pop('mystring', None)
31

32

33 if __name__ == '__main__':
34 conf = {
35 '/': {
36 'tools.sessions.on': True,
37 'tools.staticdir.root': os.path.abspath(os.getcwd())
38 },
39 '/generator': {
40 'request.dispatch': cherrypy.dispatch.MethodDispatcher(),
41 'tools.response_headers.on': True,
42 'tools.response_headers.headers': [('Content-Type', 'text/plain')],
43 },
44 '/static': {
45 'tools.staticdir.on': True,
46 'tools.staticdir.dir': './public'
47 }
48 }
49 webapp = StringGenerator()
50 webapp.generator = StringGeneratorWebService()
51 cherrypy.quickstart(webapp, '/', conf)

Save this into a file named tut08.py and run it as follows:

$ python tut08.py

Go to http://127.0.0.1:8080/ and play with the input and buttons to generate, replace or delete the strings. Notice how
the page isn’t refreshed, simply part of its content.

Notice as well how your frontend converses with the backend using a straightfoward, yet clean, web service API. That
same API could easily be used by non-HTML clients.

3.9 Tutorial 9: Data is all my life

Until now, all the generated strings were saved in the session, which by default is stored in the process memory.
Though, you can persist sessions on disk or in a distributed memory store, this is not the right way of keeping your
data on the long run. Sessions are there to identify your user and carry as little amount of data as necessary for the
operation carried by the user.

To store, persist and query data you need a proper database server. There exist many to choose from with various
paradigm support:

• relational: PostgreSQL, SQLite, MariaDB, Firebird

• column-oriented: HBase, Cassandra

• key-store: redis, memcached

• document oriented: Couchdb, MongoDB

• graph-oriented: neo4j

3.9. Tutorial 9: Data is all my life 19

http://127.0.0.1:8080/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Let’s focus on the relational ones since they are the most common and probably what you will want to learn first.

For the sake of reducing the number of dependencies for these tutorials, we will go for the sqlite database which is
directly supported by Python.

Our application will replace the storage of the generated string from the session to a SQLite database. The application
will have the same HTML code as tutorial 08. So let’s simply focus on the application code itself:

1 import os, os.path
2 import random
3 import sqlite3
4 import string
5 import time
6

7 import cherrypy
8

9 DB_STRING = "my.db"
10

11

12 class StringGenerator(object):
13 @cherrypy.expose
14 def index(self):
15 return open('index.html')
16

17

18 @cherrypy.expose
19 class StringGeneratorWebService(object):
20

21 @cherrypy.tools.accept(media='text/plain')
22 def GET(self):
23 with sqlite3.connect(DB_STRING) as c:
24 cherrypy.session['ts'] = time.time()
25 r = c.execute("SELECT value FROM user_string WHERE session_id=?",
26 [cherrypy.session.id])
27 return r.fetchone()
28

29 def POST(self, length=8):
30 some_string = ''.join(random.sample(string.hexdigits, int(length)))
31 with sqlite3.connect(DB_STRING) as c:
32 cherrypy.session['ts'] = time.time()
33 c.execute("INSERT INTO user_string VALUES (?, ?)",
34 [cherrypy.session.id, some_string])
35 return some_string
36

37 def PUT(self, another_string):
38 with sqlite3.connect(DB_STRING) as c:
39 cherrypy.session['ts'] = time.time()
40 c.execute("UPDATE user_string SET value=? WHERE session_id=?",
41 [another_string, cherrypy.session.id])
42

43 def DELETE(self):
44 cherrypy.session.pop('ts', None)
45 with sqlite3.connect(DB_STRING) as c:
46 c.execute("DELETE FROM user_string WHERE session_id=?",
47 [cherrypy.session.id])
48

49

50 def setup_database():
51 """

20 Chapter 3. Tutorials

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

52 Create the `user_string` table in the database
53 on server startup
54 """
55 with sqlite3.connect(DB_STRING) as con:
56 con.execute("CREATE TABLE user_string (session_id, value)")
57

58

59 def cleanup_database():
60 """
61 Destroy the `user_string` table from the database
62 on server shutdown.
63 """
64 with sqlite3.connect(DB_STRING) as con:
65 con.execute("DROP TABLE user_string")
66

67

68 if __name__ == '__main__':
69 conf = {
70 '/': {
71 'tools.sessions.on': True,
72 'tools.staticdir.root': os.path.abspath(os.getcwd())
73 },
74 '/generator': {
75 'request.dispatch': cherrypy.dispatch.MethodDispatcher(),
76 'tools.response_headers.on': True,
77 'tools.response_headers.headers': [('Content-Type', 'text/plain')],
78 },
79 '/static': {
80 'tools.staticdir.on': True,
81 'tools.staticdir.dir': './public'
82 }
83 }
84

85 cherrypy.engine.subscribe('start', setup_database)
86 cherrypy.engine.subscribe('stop', cleanup_database)
87

88 webapp = StringGenerator()
89 webapp.generator = StringGeneratorWebService()
90 cherrypy.quickstart(webapp, '/', conf)

Save this into a file named tut09.py and run it as follows:

$ python tut09.py

Let’s first see how we create two functions that create and destroy the table within our database. These functions are
registered to the CherryPy’s server on lines 85-86, so that they are called when the server starts and stops.

Next, notice how we replaced all the session code with calls to the database. We use the session id to identify the
user’s string within our database. Since the session will go away after a while, it’s probably not the right approach.
A better idea would be to associate the user’s login or more resilient unique identifier. For the sake of our demo, this
should do.

Important: In this example, we must still set the session to a dummy value so that the session is not discarded on
each request by CherryPy. Since we now use the database to store the generated string, we simply store a dummy
timestamp inside the session.

3.9. Tutorial 9: Data is all my life 21

https://cherrypy.readthedocs.org/en/latest/pkg/cherrypy.lib.html?highlight=fixation#session-fixation-protection

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Note: Unfortunately, sqlite in Python forbids us to share a connection between threads. Since CherryPy is a multi-
threaded server, this would be an issue. This is the reason why we open and close a connection to the database on each
call. This is clearly not really production friendly, and it is probably advisable to either use a more capable database
engine or a higher level library, such as SQLAlchemy, to better support your application’s needs.

3.10 Tutorial 10: Make it a modern single-page application with Re-
act.js

In the recent years, client-side single-page applications (SPA) have gradually eaten server-side generated content web
applications’s lunch.

This tutorial demonstrates how to integrate with React.js, a Javascript library for SPA released by Facebook in 2013.
Please refer to React.js documentation to learn more about it.

To demonstrate it, let’s use the code from tutorial 09. However, we will be replacing the HTML and Javascript code.

First, let’s see how our HTML code has changed:

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <link href="/static/css/style.css" rel="stylesheet">
5 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/react.js"></script>
6 <script src="http://code.jquery.com/jquery-2.1.1.min.js"></script>
7 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.js"></script>
8 </head>
9 <body>

10 <div id="generator"></div>
11 <script type="text/babel" src="static/js/gen.js"></script>
12 </body>
13 </html>

Basically, we have removed the entire Javascript code that was using jQuery. Instead, we load the React.js library as
well as a new, local, Javascript module, named gen.js and located in the public/js directory:

1 var StringGeneratorBox = React.createClass({
2 handleGenerate: function() {
3 var length = this.state.length;
4 this.setState(function() {
5 $.ajax({
6 url: this.props.url,
7 dataType: 'text',
8 type: 'POST',
9 data: {

10 "length": length
11 },
12 success: function(data) {
13 this.setState({
14 length: length,
15 string: data,
16 mode: "edit"
17 });
18 }.bind(this),
19 error: function(xhr, status, err) {
20 console.error(this.props.url,

22 Chapter 3. Tutorials

http://sqlalchemy.readthedocs.org
https://facebook.github.io/react/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

21 status, err.toString()
22);
23 }.bind(this)
24 });
25 });
26 },
27 handleEdit: function() {
28 var new_string = this.state.string;
29 this.setState(function() {
30 $.ajax({
31 url: this.props.url,
32 type: 'PUT',
33 data: {
34 "another_string": new_string
35 },
36 success: function() {
37 this.setState({
38 length: new_string.length,
39 string: new_string,
40 mode: "edit"
41 });
42 }.bind(this),
43 error: function(xhr, status, err) {
44 console.error(this.props.url,
45 status, err.toString()
46);
47 }.bind(this)
48 });
49 });
50 },
51 handleDelete: function() {
52 this.setState(function() {
53 $.ajax({
54 url: this.props.url,
55 type: 'DELETE',
56 success: function() {
57 this.setState({
58 length: "8",
59 string: "",
60 mode: "create"
61 });
62 }.bind(this),
63 error: function(xhr, status, err) {
64 console.error(this.props.url,
65 status, err.toString()
66);
67 }.bind(this)
68 });
69 });
70 },
71 handleLengthChange: function(length) {
72 this.setState({
73 length: length,
74 string: "",
75 mode: "create"
76 });
77 },
78 handleStringChange: function(new_string) {

3.10. Tutorial 10: Make it a modern single-page application with React.js 23

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

79 this.setState({
80 length: new_string.length,
81 string: new_string,
82 mode: "edit"
83 });
84 },
85 getInitialState: function() {
86 return {
87 length: "8",
88 string: "",
89 mode: "create"
90 };
91 },
92 render: function() {
93 return (
94 <div className="stringGenBox">
95 <StringGeneratorForm onCreateString={this.handleGenerate}
96 onReplaceString={this.handleEdit}
97 onDeleteString={this.handleDelete}
98 onLengthChange={this.handleLengthChange}
99 onStringChange={this.handleStringChange}

100 mode={this.state.mode}
101 length={this.state.length}
102 string={this.state.string}/>
103 </div>
104);
105 }
106 });
107

108 var StringGeneratorForm = React.createClass({
109 handleCreate: function(e) {
110 e.preventDefault();
111 this.props.onCreateString();
112 },
113 handleReplace: function(e) {
114 e.preventDefault();
115 this.props.onReplaceString();
116 },
117 handleDelete: function(e) {
118 e.preventDefault();
119 this.props.onDeleteString();
120 },
121 handleLengthChange: function(e) {
122 e.preventDefault();
123 var length = React.findDOMNode(this.refs.length).value.trim();
124 this.props.onLengthChange(length);
125 },
126 handleStringChange: function(e) {
127 e.preventDefault();
128 var string = React.findDOMNode(this.refs.string).value.trim();
129 this.props.onStringChange(string);
130 },
131 render: function() {
132 if (this.props.mode == "create") {
133 return (
134 <div>
135 <input type="text" ref="length" defaultValue="8" value={this.props.length} onChange={this.handleLengthChange} />
136 <button onClick={this.handleCreate}>Give it now!</button>

24 Chapter 3. Tutorials

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

137 </div>
138);
139 } else if (this.props.mode == "edit") {
140 return (
141 <div>
142 <input type="text" ref="string" value={this.props.string} onChange={this.handleStringChange} />
143 <button onClick={this.handleReplace}>Replace</button>
144 <button onClick={this.handleDelete}>Delete it</button>
145 </div>
146);
147 }
148

149 return null;
150 }
151 });
152

153 React.render(
154 <StringGeneratorBox url="/generator" />,
155 document.getElementById('generator')
156);

Wow! What a lot of code for something so simple, isn’t it? The entry point is the last few lines where we indicate that
we want to render the HTML code of the StringGeneratorBox React.js class inside the generator div.

When the page is rendered, so is that component. Notice how it is also made of another component that renders the
form itself.

This might be a little over the top for such a simple example but hopefully will get you started with React.js in the
process.

There is not much to say and, hopefully, the meaning of that code is rather clear. The component has an internal state
in which we store the current string as generated/modified by the user.

When the user changes the content of the input boxes, the state is updated on the client side. Then, when a button
is clicked, that state is sent out to the backend server using the API endpoint and the appropriate action takes places.
Then, the state is updated and so is the view.

3.11 Tutorial 11: Organize my code

CherryPy comes with a powerful architecture that helps you organizing your code in a way that should make it easier
to maintain and more flexible.

Several mechanisms are at your disposal, this tutorial will focus on the three main ones:

• dispatchers

• tools

• plugins

In order to understand them, let’s imagine you are at a superstore:

• You have several tills and people queuing for each of them (those are your requests)

• You have various sections with food and other stuff (these are your data)

• Finally you have the superstore people and their daily tasks to make sure sections are always in order (this is
your backend)

3.11. Tutorial 11: Organize my code 25

https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html
https://facebook.github.io/react/docs/forms.html

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

In spite of being really simplistic, this is not far from how your application behaves. CherryPy helps you structure
your application in a way that mirrors these high-level ideas.

3.11.1 Dispatchers

Coming back to the superstore example, it is likely that you will want to perform operations based on the till:

• Have a till for baskets with less than ten items

• Have a till for disabled people

• Have a till for pregnant women

• Have a till where you can only using the store card

To support these use-cases, CherryPy provides a mechanism called a dispatcher. A dispatcher is executed early during
the request processing in order to determine which piece of code of your application will handle the incoming request.
Or, to continue on the store analogy, a dispatcher will decide which till to lead a customer to.

3.11.2 Tools

Let’s assume your store has decided to operate a discount spree but, only for a specific category of customers. CherryPy
will deal with such use case via a mechanism called a tool.

A tool is a piece of code that runs on a per-request basis in order to perform additional work. Usually a tool is a simple
Python function that is executed at a given point during the process of the request by CherryPy.

3.11.3 Plugins

As we have seen, the store has a crew of people dedicated to manage the stock and deal with any customers’ expecta-
tion.

In the CherryPy world, this translates into having functions that run outside of any request life-cycle. These functions
should take care of background tasks, long lived connections (such as those to a database for instance), etc.

Plugins are called that way because they work along with the CherryPy engine and extend it with your operations.

26 Chapter 3. Tutorials

CHAPTER 4

Basics

The following sections will drive you through the basics of a CherryPy application, introducing some essential con-
cepts.

Contents

• Basics
– The one-minute application example
– Hosting one or more applications

* Single application
* Multiple applications

– Logging
* Disable logging
* Play along with your other loggers

– Configuring
* Global server configuration
* Per-application configuration
* Additional application settings

– Cookies
– Using sessions

* Filesystem backend
* Memcached backend
* Other backends

– Static content serving
* Serving a single file
* Serving a whole directory
* Specifying an index file
* Allow files downloading

– Dealing with JSON
* Decoding request
* Encoding response

– Authentication
* Basic
* Digest

– Favicon

27

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

4.1 The one-minute application example

The most basic application you can write with CherryPy involves almost all its core concepts.

1 import cherrypy
2

3 class Root(object):
4 @cherrypy.expose
5 def index(self):
6 return "Hello World!"
7

8 if __name__ == '__main__':
9 cherrypy.quickstart(Root(), '/')

First and foremost, for most tasks, you will never need more than a single import statement as demonstrated in line 1.

Before discussing the meat, let’s jump to line 9 which shows, how to host your application with the CherryPy applica-
tion server and serve it with its builtin HTTP server at the ‘/’ path. All in one single line. Not bad.

Let’s now step back to the actual application. Even though CherryPy does not mandate it, most of the time your
applications will be written as Python classes. Methods of those classes will be called by CherryPy to respond to
client requests. However, CherryPy needs to be aware that a method can be used that way, we say the method needs
to be exposed. This is precisely what the cherrypy.expose() decorator does in line 4.

Save the snippet in a file named myapp.py and run your first CherryPy application:

$ python myapp.py

Then point your browser at http://127.0.0.1:8080. Tada!

Note: CherryPy is a small framework that focuses on one single task: take a HTTP request and locate the most
appropriate Python function or method that match the request’s URL. Unlike other well-known frameworks, CherryPy
does not provide a built-in support for database access, HTML templating or any other middleware nifty features.

In a nutshell, once CherryPy has found and called an exposed method, it is up to you, as a developer, to provide the
tools to implement your application’s logic.

CherryPy takes the opinion that you, the developer, know best.

Warning: The previous example demonstrated the simplicty of the CherryPy interface but, your application will
likely contain a few other bits and pieces: static service, more complex structure, database access, etc. This will be
developed in the tutorial section.

CherryPy is a minimal framework but not a bare one, it comes with a few basic tools to cover common usages that you
would expect.

4.2 Hosting one or more applications

A web application needs an HTTP server to be accessed to. CherryPy provides its own, production ready, HTTP
server. There are two ways to host an application with it. The simple one and the almost-as-simple one.

28 Chapter 4. Basics

http://127.0.0.1:8080

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

4.2.1 Single application

The most straightforward way is to use cherrypy.quickstart() function. It takes at least one argument, the
instance of the application to host. Two other settings are optionals. First, the base path at which the application will
be accessible from. Second, a config dictionary or file to configure your application.

cherrypy.quickstart(Blog())
cherrypy.quickstart(Blog(), '/blog')
cherrypy.quickstart(Blog(), '/blog', {'/': {'tools.gzip.on': True}})

The first one means that your application will be available at http://hostname:port/ whereas the other two will make
your blog application available at http://hostname:port/blog. In addition, the last one provides specific settings for the
application.

Note: Notice in the third case how the settings are still relative to the application, not where it is made available at,
hence the {‘/’: ... } rather than a {‘/blog’: ... }

4.2.2 Multiple applications

The cherrypy.quickstart() approach is fine for a single application, but lacks the capacity to host several
applications with the server. To achieve this, one must use the cherrypy.tree.mount function as follows:

cherrypy.tree.mount(Blog(), '/blog', blog_conf)
cherrypy.tree.mount(Forum(), '/forum', forum_conf)

cherrypy.engine.start()
cherrypy.engine.block()

Essentially, cherrypy.tree.mount takes the same parameters as cherrypy.quickstart(): an application,
a hosting path segment and a configuration. The last two lines are simply starting application server.

Important: cherrypy.quickstart() and cherrypy.tree.mount are not exclusive. For instance, the
previous lines can be written as:

cherrypy.tree.mount(Blog(), '/blog', blog_conf)
cherrypy.quickstart(Forum(), '/forum', forum_conf)

Note: You can also host foreign WSGI application.

4.3 Logging

Logging is an important task in any application. CherryPy will log all incoming requests as well as protocol errors.

To do so, CherryPy manages two loggers:

• an access one that logs every incoming requests

• an application/error log that traces errors or other application-level messages

Your application may leverage that second logger by calling cherrypy.log().

4.3. Logging 29

http://hostname:port/
http://hostname:port/blog

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

cherrypy.log("hello there")

You can also log an exception:

try:
...

except:
cherrypy.log("kaboom!", traceback=True)

Both logs are writing to files identified by the following keys in your configuration:

• log.access_file for incoming requests using the common log format

• log.error_file for the other log

See also:

Refer to the cherrypy._cplogging module for more details about CherryPy’s logging architecture.

4.3.1 Disable logging

You may be interested in disabling either logs.

To disable file logging, simply set a en empty string to the log.access_file or log.error_file keys in your
global configuration.

To disable, console logging, set log.screen to False.

cherrypy.config.update({'log.screen': False,
'log.access_file': '',
'log.error_file': ''})

4.3.2 Play along with your other loggers

Your application may obviously already use the logging module to trace application level messages. Below is a
simple example on setting it up.

import logging
import logging.config

import cherrypy

logger = logging.getLogger()
db_logger = logging.getLogger('db')

LOG_CONF = {
'version': 1,

'formatters': {
'void': {

'format': ''
},
'standard': {

'format': '%(asctime)s [%(levelname)s] %(name)s: %(message)s'
},

},
'handlers': {

'default': {

30 Chapter 4. Basics

http://en.wikipedia.org/wiki/Common_Log_Format
https://docs.python.org/3/library/logging.html#module-logging

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

'level':'INFO',
'class':'logging.StreamHandler',
'formatter': 'standard',
'stream': 'ext://sys.stdout'

},
'cherrypy_console': {

'level':'INFO',
'class':'logging.StreamHandler',
'formatter': 'void',
'stream': 'ext://sys.stdout'

},
'cherrypy_access': {

'level':'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'formatter': 'void',
'filename': 'access.log',
'maxBytes': 10485760,
'backupCount': 20,
'encoding': 'utf8'

},
'cherrypy_error': {

'level':'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'formatter': 'void',
'filename': 'errors.log',
'maxBytes': 10485760,
'backupCount': 20,
'encoding': 'utf8'

},
},
'loggers': {

'': {
'handlers': ['default'],
'level': 'INFO'

},
'db': {

'handlers': ['default'],
'level': 'INFO' ,
'propagate': False

},
'cherrypy.access': {

'handlers': ['cherrypy_access'],
'level': 'INFO',
'propagate': False

},
'cherrypy.error': {

'handlers': ['cherrypy_console', 'cherrypy_error'],
'level': 'INFO',
'propagate': False

},
}

}

class Root(object):
@cherrypy.expose
def index(self):

logger.info("boom")

4.3. Logging 31

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

db_logger.info("bam")
cherrypy.log("bang")

return "hello world"

if __name__ == '__main__':
cherrypy.config.update({'log.screen': False,

'log.access_file': '',
'log.error_file': ''})

cherrypy.engine.unsubscribe('graceful', cherrypy.log.reopen_files)
logging.config.dictConfig(LOG_CONF)
cherrypy.quickstart(Root())

In this snippet, we create a configuration dictionary that we pass on to the logging module to configure our loggers:

• the default root logger is associated to a single stream handler

• a logger for the db backend with also a single stream handler

In addition, we re-configure the CherryPy loggers:

• the top-level cherrypy.access logger to log requests into a file

• the cherrypy.error logger to log everything else into a file and to the console

We also prevent CherryPy from trying to open its log files when the autoreloader kicks in. This is not strictly required
since we do not even let CherryPy open them in the first place. But, this avoids wasting time on something useless.

4.4 Configuring

CherryPy comes with a fine-grained configuration mechanism and settings can be set at various levels.

See also:

Once you have the reviewed the basics, please refer to the in-depth discussion around configuration.

4.4.1 Global server configuration

To configure the HTTP and application servers, use the cherrypy.config.update() method.

cherrypy.config.update({'server.socket_port': 9090})

The cherrypy.config object is a dictionary and the update method merges the passed dictionary into it.

You can also pass a file instead (assuming a server.conf file):

[global]
server.socket_port: 9090

cherrypy.config.update("server.conf")

Warning: cherrypy.config.update() is not meant to be used to configure the application. It is a common
mistake. It is used to configure the server and engine.

32 Chapter 4. Basics

https://docs.python.org/2/library/logging.config.html#logging.config.dictConfig

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

4.4.2 Per-application configuration

To configure your application, pass in a dictionary or a file when you associate your application to the server.

cherrypy.quickstart(myapp, '/', {'/': {'tools.gzip.on': True}})

or via a file (called app.conf for instance):

[/]
tools.gzip.on: True

cherrypy.quickstart(myapp, '/', "app.conf")

Although, you can define most of your configuration in a global fashion, it is sometimes convenient to define them
where they are applied in the code.

class Root(object):
@cherrypy.expose
@cherrypy.tools.gzip()
def index(self):

return "hello world!"

A variant notation to the above:

class Root(object):
@cherrypy.expose
def index(self):

return "hello world!"
index._cp_config = {'tools.gzip.on': True}

Both methods have the same effect so pick the one that suits your style best.

4.4.3 Additional application settings

You can add settings that are not specific to a request URL and retrieve them from your page handler as follows:

[/]
tools.gzip.on: True

[googleapi]
key = "..."
appid = "..."

class Root(object):
@cherrypy.expose
def index(self):

google_appid = cherrypy.request.app.config['googleapi']['appid']
return "hello world!"

cherrypy.quickstart(Root(), '/', "app.conf")

4.5 Cookies

CherryPy uses the Cookie module from python and in particular the Cookie.SimpleCookie object type to
handle cookies.

4.5. Cookies 33

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• To send a cookie to a browser, set cherrypy.response.cookie[key] = value.

• To retrieve a cookie sent by a browser, use cherrypy.request.cookie[key].

• To delete a cookie (on the client side), you must send the cookie with its expiration time set to 0:

cherrypy.response.cookie[key] = value
cherrypy.response.cookie[key]['expires'] = 0

It’s important to understand that the request cookies are not automatically copied to the response cookies.
Clients will send the same cookies on every request, and therefore cherrypy.request.cookie should be
populated each time. But the server doesn’t need to send the same cookies with every response; therefore,
cherrypy.response.cookie will usually be empty. When you wish to “delete” (expire) a cookie, therefore,
you must set cherrypy.response.cookie[key] = value first, and then set its expires attribute to 0.

Extended example:

import cherrypy

class MyCookieApp(object):
@cherrypy.expose
def set(self):

cookie = cherrypy.response.cookie
cookie['cookieName'] = 'cookieValue'
cookie['cookieName']['path'] = '/'
cookie['cookieName']['max-age'] = 3600
cookie['cookieName']['version'] = 1
return "<html><body>Hello, I just sent you a cookie</body></html>"

@cherrypy.expose
def read(self):

cookie = cherrypy.request.cookie
res = """<html><body>Hi, you sent me %s cookies.

Here is a list of cookie names/values:
""" % len(cookie)
for name in cookie.keys():

res += "name: %s, value: %s
" % (name, cookie[name].value)
return res + "</body></html>"

if __name__ == '__main__':
cherrypy.quickstart(MyCookieApp(), '/cookie')

4.6 Using sessions

Sessions are one of the most common mechanism used by developers to identify users and synchronize their activity.
By default, CherryPy does not activate sessions because it is not a mandatory feature to have, to enable it simply add
the following settings in your configuration:

[/]
tools.sessions.on: True

cherrypy.quickstart(myapp, '/', "app.conf")

Sessions are, by default, stored in RAM so, if you restart your server all of your current sessions will be lost. You can
store them in memcached or on the filesystem instead.

Using sessions in your applications is done as follows:

34 Chapter 4. Basics

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import cherrypy

@cherrypy.expose
def index(self):

if 'count' not in cherrypy.session:
cherrypy.session['count'] = 0

cherrypy.session['count'] += 1

In this snippet, everytime the the index page handler is called, the current user’s session has its ‘count’ key incremented
by 1.

CherryPy knows which session to use by inspecting the cookie sent alongside the request. This cookie contains the
session identifier used by CherryPy to load the user’s session from the storage.

See also:

Refer to the cherrypy.lib.sessions module for more details about the session interface and implementation.
Notably you will learn about sessions expiration.

4.6.1 Filesystem backend

Using a filesystem is a simple to not lose your sessions between reboots. Each session is saved in its own file within
the given directory.

[/]
tools.sessions.on: True
tools.sessions.storage_class = cherrypy.lib.sessions.FileSession
tools.sessions.storage_path = "/some/directory"

4.6.2 Memcached backend

Memcached is a popular key-store on top of your RAM, it is distributed and a good choice if you want to share sessions
outside of the process running CherryPy.

Requires that the Python memcached package is installed, which may be indicated by installing
cherrypy[memcached_session].

[/]
tools.sessions.on: True
tools.sessions.storage_class = cherrypy.lib.sessions.MemcachedSession

4.6.3 Other backends

Any other library may implement a session backend. Simply subclass cherrypy.lib.sessions.Session and
indicate that subclass as tools.sessions.storage_class.

4.7 Static content serving

CherryPy can serve your static content such as images, javascript and CSS resources, etc.

Note: CherryPy uses the mimetypes module to determine the best content-type to serve a particular resource. If
the choice is not valid, you can simply set more media-types as follows:

4.7. Static content serving 35

http://memcached.org/
https://pypi.org/project/memcached
https://docs.python.org/3/library/mimetypes.html#module-mimetypes

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import mimetypes
mimetypes.types_map['.csv'] = 'text/csv'

4.7.1 Serving a single file

You can serve a single file as follows:

[/style.css]
tools.staticfile.on = True
tools.staticfile.filename = "/home/site/style.css"

CherryPy will automatically respond to URLs such as http://hostname/style.css.

4.7.2 Serving a whole directory

Serving a whole directory is similar to a single file:

[/static]
tools.staticdir.on = True
tools.staticdir.dir = "/home/site/static"

Assuming you have a file at static/js/my.js, CherryPy will automatically respond to URLs such as
http://hostname/static/js/my.js.

Note: CherryPy always requires the absolute path to the files or directories it will serve. If you have several static
sections to configure but located in the same root directory, you can use the following shortcut:

[/]
tools.staticdir.root = "/home/site"

[/static]
tools.staticdir.on = True
tools.staticdir.dir = "static"

4.7.3 Specifying an index file

By default, CherryPy will respond to the root of a static directory with an 404 error indicating the path ‘/’ was not
found. To specify an index file, you can use the following:

[/static]
tools.staticdir.on = True
tools.staticdir.dir = "/home/site/static"
tools.staticdir.index = "index.html"

Assuming you have a file at static/index.html, CherryPy will automatically respond to URLs such as
http://hostname/static/ by returning its contents.

4.7.4 Allow files downloading

Using "application/x-download" response content-type, you can tell a browser that a resource should be
downloaded onto the user’s machine rather than displayed.

36 Chapter 4. Basics

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

You could for instance write a page handler as follows:

from cherrypy.lib.static import serve_file

@cherrypy.expose
def download(self, filepath):

return serve_file(filepath, "application/x-download", "attachment")

Assuming the filepath is a valid path on your machine, the response would be considered as a downloadable content
by the browser.

Warning: The above page handler is a security risk on its own since any file of the server could be accessed (if
the user running the server had permissions on them).

4.8 Dealing with JSON

CherryPy has built-in support for JSON encoding and decoding of the request and/or response.

4.8.1 Decoding request

To automatically decode the content of a request using JSON:

class Root(object):
@cherrypy.expose
@cherrypy.tools.json_in()
def index(self):

data = cherrypy.request.json

The json attribute attached to the request contains the decoded content.

4.8.2 Encoding response

To automatically encode the content of a response using JSON:

class Root(object):
@cherrypy.expose
@cherrypy.tools.json_out()
def index(self):

return {'key': 'value'}

CherryPy will encode any content returned by your page handler using JSON. Not all type of objects may natively be
encoded.

4.9 Authentication

CherryPy provides support for two very simple authentication mechanisms, both described in RFC 2617: Basic and
Digest. They are most commonly known to trigger a browser’s popup asking users their name and password.

4.8. Dealing with JSON 37

https://tools.ietf.org/html/rfc2617.html

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

4.9.1 Basic

Basic authentication is the simplest form of authentication however it is not a secure one as the user’s credentials are
embedded into the request. We advise against using it unless you are running on SSL or within a closed network.

from cherrypy.lib import auth_basic

USERS = {'jon': 'secret'}

def validate_password(realm, username, password):
if username in USERS and USERS[username] == password:

return True
return False

conf = {
'/protected/area': {

'tools.auth_basic.on': True,
'tools.auth_basic.realm': 'localhost',
'tools.auth_basic.checkpassword': validate_password

}
}

cherrypy.quickstart(myapp, '/', conf)

Simply put, you have to provide a function that will be called by CherryPy passing the username and password decoded
from the request.

The function can read its data from any source it has to: a file, a database, memory, etc.

4.9.2 Digest

Digest authentication differs by the fact the credentials are not carried on by the request so it’s a little more secure than
basic.

CherryPy’s digest support has a similar interface to the basic one explained above.

from cherrypy.lib import auth_digest

USERS = {'jon': 'secret'}

conf = {
'/protected/area': {

'tools.auth_digest.on': True,
'tools.auth_digest.realm': 'localhost',
'tools.auth_digest.get_ha1': auth_digest.get_ha1_dict_plain(USERS),
'tools.auth_digest.key': 'a565c27146791cfb'

}
}

cherrypy.quickstart(myapp, '/', conf)

4.10 Favicon

CherryPy serves its own sweet red cherrypy as the default favicon using the static file tool. You can serve your own
favicon as follows:

38 Chapter 4. Basics

http://en.wikipedia.org/wiki/Favicon

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import cherrypy

class HelloWorld(object):
@cherrypy.expose
def index(self):

return "Hello World!"

if __name__ == '__main__':
cherrypy.quickstart(HelloWorld(), '/',

{
'/favicon.ico':
{

'tools.staticfile.on': True,
'tools.staticfile.filename': '/path/to/myfavicon.ico'

}
}

)

Please refer to the static serving section for more details.

You can also use a file to configure it:

[/favicon.ico]
tools.staticfile.on: True
tools.staticfile.filename: "/path/to/myfavicon.ico"

import cherrypy

class HelloWorld(object):
@cherrypy.expose
def index(self):

return "Hello World!"

if __name__ == '__main__':
cherrypy.quickstart(HelloWorld(), '/', app.conf)

4.10. Favicon 39

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

40 Chapter 4. Basics

CHAPTER 5

Advanced

CherryPy has support for more advanced features that these sections will describe.

Contents

• Advanced
– Set aliases to page handlers
– RESTful-style dispatching

* The special _cp_dispatch method
* The popargs decorator

– Error handling
– Streaming the response body

* The “normal” CherryPy response process
* How “streaming output” works with CherryPy

– Response timeouts
* Timeout Monitor

– Deal with signals
* Windows Console Events

– Securing your server
– Multiple HTTP servers support
– WSGI support

* Make your CherryPy application a WSGI application
* Host a foreign WSGI application in CherryPy
* No need for the WSGI interface?

– WebSocket support
– Database support
– HTML Templating support
– Testing your application

5.1 Set aliases to page handlers

A fairly unknown, yet useful, feature provided by the cherrypy.expose() decorator is to support aliases.

Let’s use the template provided by tutorial 03:

import random
import string

import cherrypy

41

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

class StringGenerator(object):
@cherrypy.expose(['generer', 'generar'])
def generate(self, length=8):

return ''.join(random.sample(string.hexdigits, int(length)))

if __name__ == '__main__':
cherrypy.quickstart(StringGenerator())

In this example, we create localized aliases for the page handler. This means the page handler will be accessible via:

• /generate

• /generer (French)

• /generar (Spanish)

Obviously, your aliases may be whatever suits your needs.

Note: The alias may be a single string or a list of them.

5.2 RESTful-style dispatching

The term RESTful URL is sometimes used to talk about friendly URLs that nicely map to the entities an application
exposes.

Important: We will not enter the debate around what is restful or not but we will showcase two mechanisms to
implement the usual idea in your CherryPy application.

Let’s assume you wish to create an application that exposes music bands and their records. Your application will
probably have the following URLs:

• http://hostname/<artist>/

• http://hostname/<artist>/albums/<album_title>/

It’s quite clear you would not create a page handler named after every possible band in the world. This means you will
need a page handler that acts as a proxy for all of them.

The default dispatcher cannot deal with that scenario on its own because it expects page handlers to be explicitely
declared in your source code. Luckily, CherryPy provides ways to support those use cases.

See also:

This section extends from this stackoverflow response.

5.2.1 The special _cp_dispatch method

_cp_dispatch is a special method you declare in any of your controller to massage the remaining segments before
CherryPy gets to process them. This offers you the capacity to remove, add or otherwise handle any segment you wish
and, even, entirely change the remaining parts.

import cherrypy

class Band(object):

42 Chapter 5. Advanced

http://hostname
http://hostname
http://stackoverflow.com/a/15789415/1363905

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

def __init__(self):
self.albums = Album()

def _cp_dispatch(self, vpath):
if len(vpath) == 1:

cherrypy.request.params['name'] = vpath.pop()
return self

if len(vpath) == 3:
cherrypy.request.params['artist'] = vpath.pop(0) # /band name/
vpath.pop(0) # /albums/
cherrypy.request.params['title'] = vpath.pop(0) # /album title/
return self.albums

return vpath

@cherrypy.expose
def index(self, name):

return 'About %s...' % name

class Album(object):
@cherrypy.expose
def index(self, artist, title):

return 'About %s by %s...' % (title, artist)

if __name__ == '__main__':
cherrypy.quickstart(Band())

Notice how the controller defines _cp_dispatch, it takes a single argument, the URL path info broken into its segments.

The method can inspect and manipulate the list of segments, removing any or adding new segments at any position.
The new list of segments is then sent to the dispatcher which will use it to locate the appropriate resource.

In the above example, you should be able to go to the following URLs:

• http://localhost:8080/nirvana/

• http://localhost:8080/nirvana/albums/nevermind/

The /nirvana/ segment is associated to the band and the /nevermind/ segment relates to the album.

To achieve this, our _cp_dispatch method works on the idea that the default dispatcher matches URLs against page
handler signatures and their position in the tree of handlers.

In this case, we take the dynamic segments in the URL (band and record names), we inject them into the request
parameters and we remove them from the segment lists as if they had never been there in the first place.

In other words, _cp_dispatch makes it as if we were working on the following URLs:

• http://localhost:8080/?artist=nirvana

• http://localhost:8080/albums/?artist=nirvana&title=nevermind

5.2.2 The popargs decorator

cherrypy.popargs() is more straightforward as it gives a name to any segment that CherryPy wouldn’t be able
to interpret otherwise. This makes the matching of segments with page handler signatures easier and helps CherryPy
understand the structure of your URL.

5.2. RESTful-style dispatching 43

http://localhost:8080/nirvana/
http://localhost:8080/nirvana/albums/nevermind/
http://localhost:8080/?artist=nirvana
http://localhost:8080/albums/?artist=nirvana&title=nevermind

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import cherrypy

@cherrypy.popargs('band_name')
class Band(object):

def __init__(self):
self.albums = Album()

@cherrypy.expose
def index(self, band_name):

return 'About %s...' % band_name

@cherrypy.popargs('album_title')
class Album(object):

@cherrypy.expose
def index(self, band_name, album_title):

return 'About %s by %s...' % (album_title, band_name)

if __name__ == '__main__':
cherrypy.quickstart(Band())

This works similarly to _cp_dispatch but, as said above, is more explicit and localized. It says:

• take the first segment and store it into a parameter named band_name

• take again the first segment (since we removed the previous first) and store it into a parameter named album_title

Note that the decorator accepts more than a single binding. For instance:

@cherrypy.popargs('album_title')
class Album(object):

def __init__(self):
self.tracks = Track()

@cherrypy.popargs('track_num', 'track_title')
class Track(object):

@cherrypy.expose
def index(self, band_name, album_title, track_num, track_title):

...

This would handle the following URL:

• http://localhost:8080/nirvana/albums/nevermind/tracks/06/polly

Notice finally how the whole stack of segments is passed to each page handler so that you have the full context.

5.3 Error handling

CherryPy’s HTTPError class supports raising immediate responses in the case of errors.

class Root:
@cherrypy.expose
def thing(self, path):

if not authorized():
raise cherrypy.HTTPError(401, 'Unauthorized')

try:
file = open(path)

except FileNotFoundError:
raise cherrypy.HTTPError(404)

44 Chapter 5. Advanced

http://localhost:8080/nirvana/albums/nevermind/tracks/06/polly

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

HTTPError.handle is a context manager which supports translating exceptions raised in the app into an appropri-
ate HTTP response, as in the second example.

class Root:
@cherrypy.expose
def thing(self, path):

with cherrypy.HTTPError.handle(FileNotFoundError, 404):
file = open(path)

5.4 Streaming the response body

CherryPy handles HTTP requests, packing and unpacking the low-level details, then passing control to your applica-
tion’s page handler, which produce the body of the response. CherryPy allows you to return body content in a variety
of types: a string, a list of strings, a file. CherryPy also allows you to yield content, rather than return content. When
you use “yield”, you also have the option of streaming the output.

In general, it is safer and easier to not stream output. Therefore, streaming output is off by default. Streaming
output and also using sessions requires a good understanding of how session locks work.

5.4.1 The “normal” CherryPy response process

When you provide content from your page handler, CherryPy manages the conversation between the HTTP server and
your code like this:

Notice that the HTTP server gathers all output first and then writes everything to the client at once: status, headers,
and body. This works well for static or simple pages, since the entire response can be changed at any time, either in
your application code, or by the CherryPy framework.

5.4.2 How “streaming output” works with CherryPy

When you set the config entry “response.stream” to True (and use “yield”), CherryPy manages the conversation be-
tween the HTTP server and your code like this:

When you stream, your application doesn’t immediately pass raw body content back to CherryPy or to the HTTP
server. Instead, it passes back a generator. At that point, CherryPy finalizes the status and headers, before the generator
has been consumed, or has produced any output. This is necessary to allow the HTTP server to send the headers and
pieces of the body as they become available.

Once CherryPy has set the status and headers, it sends them to the HTTP server, which then writes them out to the
client. From that point on, the CherryPy framework mostly steps out of the way, and the HTTP server essentially
requests content directly from your application code (your page handler method).

Therefore, when streaming, if an error occurs within your page handler, CherryPy will not catch it–the HTTP server
will catch it. Because the headers (and potentially some of the body) have already been written to the client, the server
cannot know a safe means of handling the error, and will therefore simply close the connection (the current, builtin
servers actually write out a short error message in the body, but this may be changed, and is not guaranteed behavior
for all HTTP servers you might use with CherryPy).

In addition, you cannot manually modify the status or headers within your page handler if that handler method is
a streaming generator, because the method will not be iterated over until after the headers have been written to the
client. This includes raising exceptions like HTTPError, NotFound, InternalRedirect and HTTPRedirect. To
use a streaming generator while modifying headers, you would have to return a generator that is separate from (or
embedded in) your page handler. For example:

5.4. Streaming the response body 45

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

class Root:
@cherrypy.expose
def thing(self):

cherrypy.response.headers['Content-Type'] = 'text/plain'
if not authorized():

raise cherrypy.NotFound()
def content():

yield "Hello, "
yield "world"

return content()
thing._cp_config = {'response.stream': True}

Streaming generators are sexy, but they play havoc with HTTP. CherryPy allows you to stream output for specific
situations: pages which take many minutes to produce, or pages which need a portion of their content immediately
output to the client. Because of the issues outlined above, it is usually better to flatten (buffer) content rather than
stream content. Do otherwise only when the benefits of streaming outweigh the risks.

5.5 Response timeouts

CherryPy responses include 3 attributes related to time:

• response.time: the time.time() at which the response began

• response.timeout: the number of seconds to allow responses to run

• response.timed_out: a boolean indicating whether the response has timed out (default False).

The request processing logic inspects the value of response.timed_out at various stages; if it is ever True, then
TimeoutError is raised. You are free to do the same within your own code.

Rather than calculate the difference by hand, you can call response.check_timeout to set timed_out for
you.

Note: The default response timeout is 300 seconds.

5.5.1 Timeout Monitor

In addition, CherryPy includes a cherrypy.engine.timeout_monitor which monitors all active requests in
a separate thread; periodically, it calls check_timeout on them all. It is subscribed by default. To turn it off:

[global]
engine.timeout_monitor.on: False

or:

cherrypy.engine.timeout_monitor.unsubscribe()

You can also change the interval (in seconds) at which the timeout monitor runs:

[global]
engine.timeout_monitor.frequency: 60 * 60

The default is once per minute. The above example changes that to once per hour.

46 Chapter 5. Advanced

https://docs.python.org/3/library/time.html#time.time
https://docs.python.org/3/library/exceptions.html#TimeoutError

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

5.6 Deal with signals

This engine plugin is instantiated automatically as cherrypy.engine.signal_handler. However, it is only subscribed
automatically by cherrypy.quickstart(). So if you want signal handling and you’re calling:

tree.mount()
engine.start()
engine.block()

on your own, be sure to add before you start the engine:

engine.signals.subscribe()

5.6.1 Windows Console Events

Microsoft Windows uses console events to communicate some signals, like Ctrl-C. Deploying CherryPy on Win-
dows platforms requires Python for Windows Extensions, which are installed automatically, being provided an
extra dependency with environment marker. With that installed, CherryPy will handle Ctrl-C and other console
events (CTRL_C_EVENT, CTRL_LOGOFF_EVENT, CTRL_BREAK_EVENT, CTRL_SHUTDOWN_EVENT, and
CTRL_CLOSE_EVENT) automatically, shutting down the bus in preparation for process exit.

5.7 Securing your server

Note: This section is not meant as a complete guide to securing a web application or ecosystem. Please review the
various guides provided at OWASP.

There are several settings that can be enabled to make CherryPy pages more secure. These include:

Transmitting data:

1. Use Secure Cookies

Rendering pages:

1. Set HttpOnly cookies

2. Set XFrame options

3. Enable XSS Protection

4. Set the Content Security Policy

An easy way to accomplish this is to set headers with a tool and wrap your entire CherryPy application with it:

import cherrypy

set the priority according to your needs if you are hooking something
else on the 'before_finalize' hook point.
@cherrypy.tools.register('before_finalize', priority=60)
def secureheaders():

headers = cherrypy.response.headers
headers['X-Frame-Options'] = 'DENY'
headers['X-XSS-Protection'] = '1; mode=block'
headers['Content-Security-Policy'] = "default-src='self'"

5.6. Deal with signals 47

http://sourceforge.net/projects/pywin32/
https://www.owasp.org/index.php/Main_Page

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Note: Read more about those headers.

Then, in the configuration file (or any other place that you want to enable the tool):

[/]
tools.secureheaders.on = True

If you use sessions you can also enable these settings:

[/]
tools.sessions.on = True
increase security on sessions
tools.sessions.secure = True
tools.sessions.httponly = True

If you use SSL you can also enable Strict Transport Security:

add this to secureheaders():
only add Strict-Transport headers if we're actually using SSL; see the ietf spec
"An HSTS Host MUST NOT include the STS header field in HTTP responses
conveyed over non-secure transport"
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-14#section-7.2
if (cherrypy.server.ssl_certificate != None and cherrypy.server.ssl_private_key != None):

headers['Strict-Transport-Security'] = 'max-age=31536000' # one year

Next, you should probably use SSL.

5.8 Multiple HTTP servers support

CherryPy starts its own HTTP server whenever you start the engine. In some cases, you may wish to host your
application on more than a single port. This is easily achieved:

from cherrypy._cpserver import Server
server = Server()
server.socket_port = 8090
server.subscribe()

You can create as many server server instances as you need, once subscribed, they will follow the CherryPy engine’s
life-cycle.

5.9 WSGI support

CherryPy supports the WSGI interface defined in PEP 333 as well as its updates in PEP 3333. It means the following:

• You can host a foreign WSGI application with the CherryPy server

• A CherryPy application can be hosted by another WSGI server

5.9.1 Make your CherryPy application a WSGI application

A WSGI application can be obtained from your application as follows:

48 Chapter 5. Advanced

https://www.owasp.org/index.php/List_of_useful_HTTP_headers
https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import cherrypy
wsgiapp = cherrypy.Application(StringGenerator(), '/', config=myconf)

Simply use the wsgiapp instance in any WSGI-aware server.

5.9.2 Host a foreign WSGI application in CherryPy

Assuming you have a WSGI-aware application, you can host it in your CherryPy server using the
cherrypy.tree.graft facility.

def raw_wsgi_app(environ, start_response):
status = '200 OK'
response_headers = [('Content-type','text/plain')]
start_response(status, response_headers)
return ['Hello world!']

cherrypy.tree.graft(raw_wsgi_app, '/')

Important: You cannot use tools with a foreign WSGI application. However, you can still benefit from the CherryPy
bus.

5.9.3 No need for the WSGI interface?

The default CherryPy HTTP server supports the WSGI interfaces defined in PEP 333 and PEP 3333. However, if your
application is a pure CherryPy application, you can switch to a HTTP server that by-passes the WSGI layer altogether.
It will provide a slight performance increase.

import cherrypy

class Root(object):
@cherrypy.expose
def index(self):

return "Hello World!"

if __name__ == '__main__':
from cherrypy._cpnative_server import CPHTTPServer
cherrypy.server.httpserver = CPHTTPServer(cherrypy.server)

cherrypy.quickstart(Root(), '/')

Important: Using the native server, you will not be able to graft a WSGI application as shown in the previous section.
Doing so will result in a server error at runtime.

5.10 WebSocket support

WebSocket is a recent application protocol that came to life from the HTML5 working-group in response to the needs
for bi-directional communication. Various hacks had been proposed such as Comet, polling, etc.

5.10. WebSocket support 49

https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333
http://tools.ietf.org/html/rfc6455

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

WebSocket is a socket that starts its life from a HTTP upgrade request. Once the upgrade is performed, the underlying
socket is kept opened but not used in a HTTP context any longer. Instead, both connected endpoints may use the
socket to push data to the other end.

CherryPy itself does not support WebSocket, but the feature is provided by an external library called ws4py.

5.11 Database support

CherryPy does not bundle any database access but its architecture makes it easy to integrate common database inter-
faces such as the DB-API specified in PEP 249. Alternatively, you can also use an ORM such as SQLAlchemy or
SQLObject.

You will find here a recipe on how integrating SQLAlchemy using a mix of plugins and tools.

5.12 HTML Templating support

CherryPy does not provide any HTML template but its architecture makes it easy to integrate one. Popular ones are
Mako or Jinja2.

You will find here a recipe on how to integrate them using a mix plugins and tools.

5.13 Testing your application

Web applications, like any other kind of code, must be tested. CherryPy provides a helper class to ease writing
functional tests.

Here is a simple example for a basic echo application:

import cherrypy
from cherrypy.test import helper

class SimpleCPTest(helper.CPWebCase):
def setup_server():

class Root(object):
@cherrypy.expose
def echo(self, message):

return message

cherrypy.tree.mount(Root())
setup_server = staticmethod(setup_server)

def test_message_should_be_returned_as_is(self):
self.getPage("/echo?message=Hello%20world")
self.assertStatus('200 OK')
self.assertHeader('Content-Type', 'text/html;charset=utf-8')
self.assertBody('Hello world')

def test_non_utf8_message_will_fail(self):
"""
CherryPy defaults to decode the query-string
using UTF-8, trying to send a query-string with
a different encoding will raise a 404 since
it considers it's a different URL.

50 Chapter 5. Advanced

https://github.com/Lawouach/WebSocket-for-Python
https://www.python.org/dev/peps/pep-0249
http://sqlalchemy.readthedocs.org
https://pypi.python.org/pypi/SQLObject/
https://bitbucket.org/Lawouach/cherrypy-recipes/src/tip/web/database/sql_alchemy/
http://www.makotemplates.org
http://jinja.pocoo.org/docs/
https://bitbucket.org/Lawouach/cherrypy-recipes/src/tip/web/templating/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

"""
self.getPage("/echo?message=A+bient%F4t",

headers=[
('Accept-Charset', 'ISO-8859-1,utf-8'),
('Content-Type', 'text/html;charset=ISO-8859-1')

]
)
self.assertStatus('404 Not Found')

As you can see the, test inherits from that helper class. You should setup your application and mount it as per-usual.
Then, define your various tests and call the helper getPage() method to perform a request. Simply use the various
specialized assert* methods to validate your workflow and data.

You can then run the test using py.test as follows:

$ py.test -s test_echo_app.py

The -s is necessary because the CherryPy class also wraps stdin and stdout.

Note: Although they are written using the typical pattern the unittest module supports, they are not bare unit
tests. Indeed, a whole CherryPy stack is started for you and runs your application. If you want to really unit test your
CherryPy application, meaning without having to start a server, you may want to have a look at this recipe.

5.13. Testing your application 51

http://pytest.org/latest/
https://docs.python.org/3/library/unittest.html#module-unittest
https://bitbucket.org/Lawouach/cherrypy-recipes/src/tip/testing/unit/serverless/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

52 Chapter 5. Advanced

CHAPTER 6

Configure

Configuration in CherryPy is implemented via dictionaries. Keys are strings which name the mapped value; values
may be of any type.

In CherryPy 3, you use configuration (files or dicts) to set attributes directly on the engine, server, request, response,
and log objects. So the best way to know the full range of what’s available in the config file is to simply import those
objects and see what help(obj) tells you.

Note: If you are new to CherryPy, please refer first to the simpler basic config section first.

Contents

• Configure
– Architecture

* Global config
* Application config
* Request config

– Declaration
* Configuration files
* _cp_config: attaching config to handlers

– Namespaces
* Builtin namespaces
* Custom config namespaces
* Environments

6.1 Architecture

The first thing you need to know about CherryPy 3’s configuration is that it separates global config from application
config. If you’re deploying multiple applications at the same site (and more and more people are, as Python web
apps are tending to decentralize), you need to be careful to separate the configurations, as well. There’s only ever one
“global config”, but there is a separate “app config” for each app you deploy.

CherryPy Requests are part of an Application, which runs in a global context, and configuration data may apply to any
of those three scopes. Let’s look at each of those scopes in turn.

53

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

6.1.1 Global config

Global config entries apply everywhere, and are stored in cherrypy.config. This flat dict only holds global config
data; that is, “site-wide” config entries which affect all mounted applications.

Global config is stored in the cherrypy.config dict, and you therefore update it by calling
cherrypy.config.update(conf). The conf argument can be either a filename, an open file, or a dict of
config entries. Here’s an example of passing a dict argument:

cherrypy.config.update({'server.socket_host': '64.72.221.48',
'server.socket_port': 80,

})

The server.socket_host option in this example determines on which network interface CherryPy will listen.
The server.socket_port option declares the TCP port on which to listen.

6.1.2 Application config

Application entries apply to a single mounted application, and are stored on each Application object itself as
app.config. This is a two-level dict where each top-level key is a path, or “relative URL” (for example,
"/" or "/my/page"), and each value is a dict of config entries. The URL’s are relative to the script name
(mount point) of the Application. Usually, all this data is provided in the call to tree.mount(root(),
script_name=’/path/to’, config=conf), although you may also use app.merge(conf). The conf
argument can be either a filename, an open file, or a dict of config entries.

Configuration file example:

[/]
tools.trailing_slash.on = False
request.dispatch: cherrypy.dispatch.MethodDispatcher()

or, in python code:

config = {'/':
{

'request.dispatch': cherrypy.dispatch.MethodDispatcher(),
'tools.trailing_slash.on': False,

}
}
cherrypy.tree.mount(Root(), config=config)

CherryPy only uses sections that start with "/" (except [global], see below). That means you can place your own
configuration entries in a CherryPy config file by giving them a section name which does not start with "/". For
example, you might include database entries like this:

[global]
server.socket_host: "0.0.0.0"

[Databases]
driver: "postgres"
host: "localhost"
port: 5432

[/path]
response.timeout: 6000

Then, in your application code you can read these values during request time via
cherrypy.request.app.config[’Databases’]. For code that is outside the request process, you’ll

54 Chapter 6. Configure

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

have to pass a reference to your Application around.

6.1.3 Request config

Each Request object possesses a single request.config dict. Early in the request process, this dict is populated
by merging Global config, Application config, and any config acquired while looking up the page handler (see next).
This dict contains only those config entries which apply to the given request.

Note: when you do an InternalRedirect, this config attribute is recalculated for the new path.

6.2 Declaration

Configuration data may be supplied as a Python dictionary, as a filename, or as an open file object.

6.2.1 Configuration files

When you supply a filename or file, CherryPy uses Python’s builtin ConfigParser; you declare Application config by
writing each path as a section header, and each entry as a "key: value" (or "key = value") pair:

[/path/to/my/page]
response.stream: True
tools.trailing_slash.extra = False

Combined Configuration Files

If you are only deploying a single application, you can make a single config file that contains both global
and app entries. Just stick the global entries into a config section named [global], and pass the same
file to both config.update and tree.mount <cherrypy._cptree.Tree.mount(). If you’re calling
cherrypy.quickstart(app root, script name, config), it will pass the config to both places for
you. But as soon as you decide to add another application to the same site, you need to separate the two config
files/dicts.

Separate Configuration Files

If you’re deploying more than one application in the same process, you need (1) file for global config, plus (1) file for
each Application. The global config is applied by calling cherrypy.config.update, and application config is
usually passed in a call to cherrypy.tree.mount.

In general, you should set global config first, and then mount each application with its own config. Among other
benefits, this allows you to set up global logging so that, if something goes wrong while trying to mount an application,
you’ll see the tracebacks. In other words, use this order:

global config
cherrypy.config.update({'environment': 'production',

'log.error_file': 'site.log',
...
})

Mount each app and pass it its own config

6.2. Declaration 55

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

cherrypy.tree.mount(root1, "", appconf1)
cherrypy.tree.mount(root2, "/forum", appconf2)
cherrypy.tree.mount(root3, "/blog", appconf3)

if hasattr(cherrypy.engine, 'block'):
3.1 syntax
cherrypy.engine.start()
cherrypy.engine.block()

else:
3.0 syntax
cherrypy.server.quickstart()
cherrypy.engine.start()

Values in config files use Python syntax

Config entries are always a key/value pair, like server.socket_port = 8080. The key is always a name, and
the value is always a Python object. That is, if the value you are setting is an int (or other number), it needs to
look like a Python int; for example, 8080. If the value is a string, it needs to be quoted, just like a Python string.
Arbitrary objects can also be created, just like in Python code (assuming they can be found/imported). Here’s an
extended example, showing you some of the different types:

[global]
log.error_file: "/home/fumanchu/myapp.log"
environment = 'production'
server.max_request_body_size: 1200

[/myapp]
tools.trailing_slash.on = False
request.dispatch: cherrypy.dispatch.MethodDispatcher()

6.2.2 _cp_config: attaching config to handlers

Config files have a severe limitation: values are always keyed by URL. For example:

[/path/to/page]
methods_with_bodies = ("POST", "PUT", "PROPPATCH")

It’s obvious that the extra method is the norm for that path; in fact, the code could be considered broken without it. In
CherryPy, you can attach that bit of config directly on the page handler:

@cherrypy.expose
def page(self):

return "Hello, world!"
page._cp_config = {"request.methods_with_bodies": ("POST", "PUT", "PROPPATCH")}

_cp_config is a reserved attribute which the dispatcher looks for at each node in the object tree. The _cp_config
attribute must be a CherryPy config dictionary. If the dispatcher finds a _cp_config attribute, it merges that dictio-
nary into the rest of the config. The entire merged config dictionary is placed in cherrypy.request.config.

This can be done at any point in the tree of objects; for example, we could have attached that config to a class which
contains the page method:

class SetOPages:

_cp_config = {"request.methods_with_bodies": ("POST", "PUT", "PROPPATCH")}

56 Chapter 6. Configure

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

@cherrypy.expose
def page(self):

return "Hullo, Werld!"

Note: This behavior is only guaranteed for the default dispatcher. Other dispatchers may have different restrictions
on where you can attach _cp_config attributes.

This technique allows you to:

• Put config near where it’s used for improved readability and maintainability.

• Attach config to objects instead of URL’s. This allows multiple URL’s to point to the same object, yet you only
need to define the config once.

• Provide defaults which are still overridable in a config file.

6.3 Namespaces

Because config entries usually just set attributes on objects, they’re almost all of the form: object.attribute.
A few are of the form: object.subobject.attribute. They look like normal Python attribute chains, be-
cause they work like them. We call the first name in the chain the “config namespace”. When you provide a con-
fig entry, it is bound as early as possible to the actual object referenced by the namespace; for example, the entry
response.stream actually sets the stream attribute of cherrypy.response! In this way, you can easily
determine the default value by firing up a python interpreter and typing:

>>> import cherrypy
>>> cherrypy.response.stream
False

Each config namespace has its own handler; for example, the “request” namespace has a handler which takes your
config entry and sets that value on the appropriate “request” attribute. There are a few namespaces, however, which
don’t work like normal attributes behind the scenes; however, they still use dotted keys and are considered to “have a
namespace”.

6.3.1 Builtin namespaces

Entries from each namespace may be allowed in the global, application root ("/") or per-path config, or a combination:

Scope Global Application Root App Path
engine X
hooks X X X
log X X
request X X X
response X X X
server X
tools X X X

engine

Entries in this namespace controls the ‘application engine’. These can only be declared in the global config. Any
attribute of cherrypy.engine may be set in config; however, there are a few extra entries available in config:

6.3. Namespaces 57

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• Plugin attributes. Many of the Engine Plugins are themselves attributes of cherrypy.engine. You
can set any attribute of an attached plugin by simply naming it. For example, there is an instance of the
Autoreloader class at engine.autoreload; you can set its “frequency” attribute via the config en-
try engine.autoreload.frequency = 60. In addition, you can turn such plugins on and off by setting
engine.autoreload.on = True or False.

• engine.SIGHUP/SIGTERM: These entries can be used to set the list of listeners for the given channel.
Mostly, this is used to turn off the signal handling one gets automatically via cherrypy.quickstart().

hooks

Declares additional request-processing functions. Use this to append your own Hook functions to the request. For
example, to add my_hook_func to the before_handler hookpoint:

[/]
hooks.before_handler = myapp.my_hook_func

log

Configures logging. These can only be declared in the global config (for global logging) or [/] config (for each
application). See LogManager for the list of configurable attributes. Typically, the “access_file”, “error_file”, and
“screen” attributes are the most commonly configured.

request

Sets attributes on each Request. See the Request class for a complete list.

response

Sets attributes on each Response. See the Response class for a complete list.

server

Controls the default HTTP server via cherrypy.server (see that class for a complete list of configurable at-
tributes). These can only be declared in the global config.

tools

Enables and configures additional request-processing packages. See the /tutorial/tools overview for more
information.

wsgi

Adds WSGI middleware to an Application’s “pipeline”. These can only be declared in the app’s root config (“/”).

• wsgi.pipeline: Appends to the WSGi pipeline. The value must be a list of (name, app factory) pairs.
Each app factory must be a WSGI callable class (or callable that returns a WSGI callable); it must take an
initial ‘nextapp’ argument, plus any optional keyword arguments. The optional arguments may be configured
via wsgi.<name>.<arg>.

• wsgi.response_class: Overrides the default Response class.

58 Chapter 6. Configure

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

checker

Controls the “checker”, which looks for common errors in app state (including config) when the engine starts. You
can turn off individual checks by setting them to False in config. See cherrypy._cpchecker.Checker for a
complete list. Global config only.

6.3.2 Custom config namespaces

You can define your own namespaces if you like, and they can do far more than simply set attributes. The
test/test_configmodule, for example, shows an example of a custom namespace that coerces incoming params
and outgoing body content. The cherrypy._cpwsgi module includes an additional, builtin namespace for invok-
ing WSGI middleware.

In essence, a config namespace handler is just a function, that gets passed any config entries in its namespace. You
add it to a namespaces registry (a dict), where keys are namespace names and values are handler functions. When a
config entry for your namespace is encountered, the corresponding handler function will be called, passing the config
key and value; that is, namespaces[namespace](k, v). For example, if you write:

def db_namespace(k, v):
if k == 'connstring':

orm.connect(v)
cherrypy.config.namespaces['db'] = db_namespace

then cherrypy.config.update({"db.connstring": "Oracle:host=1.10.100.200;sid=TEST"})
will call db_namespace(’connstring’, ’Oracle:host=1.10.100.200;sid=TEST’).

The point at which your namespace handler is called depends on where you add it:

Scope Namespace dict Handler is called in
Global cherrypy.config.namespacescherrypy.config.update
Applica-
tion

app.namespaces Application.merge (which is called by cherrypy.tree.mount)

Request app.request_class.namespacesRequest.configure (called for each request, after the handler is
looked up)

The name can be any string, and the handler must be either a callable or a (Python 2.5 style) context manager.

If you need additional code to run when all your namespace keys are collected, you can supply a callable context
manager in place of a normal function for the handler. Context managers are defined in PEP 343.

6.3.3 Environments

The only key that does not exist in a namespace is the “environment” entry. It only applies to the global config,
and only when you use cherrypy.config.update. This special entry imports other config entries from the
following template stored in cherrypy._cpconfig.environments[environment].

If you find the set of existing environments (production, staging, etc) too limiting or just plain wrong, feel free to
extend them or add new environments:

cherrypy._cpconfig.environments['staging']['log.screen'] = False

cherrypy._cpconfig.environments['Greek'] = {
'tools.encode.encoding': 'ISO-8859-7',
'tools.decode.encoding': 'ISO-8859-7',
}

6.3. Namespaces 59

https://www.python.org/dev/peps/pep-0343

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

60 Chapter 6. Configure

CHAPTER 7

Extend

CherryPy is truly an open framework, you can extend and plug new functions at will either server-side or on a per-
requests basis. Either way, CherryPy is made to help you build your application and support your architecture via
simple patterns.

Contents

• Extend
– Server-wide functions

* Publish/Subscribe pattern
· Typical pattern
· Implementation details
· Engine as a pubsub bus
· Built-in channels
· Bus API

* Plugins
· Create a plugin
· Enable a plugin
· Disable a plugin

– Per-request functions
* Hook point
* Tools

· Stateful tools
· Tools ordering
· Toolboxes

* Request parameters manipulation
– Tailored dispatchers

* Tool or dispatcher?
– Request body processors

7.1 Server-wide functions

CherryPy can be considered both as a HTTP library as much as a web application framework. In that latter case,
its architecture provides mechanisms to support operations accross the whole server instance. This offers a powerful
canvas to perform persistent operations as server-wide functions live outside the request processing itself. They are
available to the whole process as long as the bus lives.

Typical use cases:

61

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• Keeping a pool of connection to an external server so that your need not to re-open them on each request
(database connections for instance).

• Background processing (say you need work to be done without blocking the whole request itself).

7.1.1 Publish/Subscribe pattern

CherryPy’s backbone consists of a bus system implementing a simple publish/subscribe
messaging pattern. Simply put, in CherryPy everything is controlled via that bus.
One can easily picture the bus as a sushi restaurant’s belt as in the picture below.

You can subscribe and publish to channels on a bus. A channel is bit like a unique identifier within the bus. When a
message is published to a channel, the bus will dispatch the message to all subscribers for that channel.

One interesting aspect of a pubsub pattern is that it promotes decoupling between a caller and the callee. A published
message will eventually generate a response but the publisher does not know where that response came from.

Thanks to that decoupling, a CherryPy application can easily access functionalities without having to hold a reference
to the entity providing that functionality. Instead, the application simply publishes onto the bus and will receive the
appropriate response, which is all that matter.

Typical pattern

Let’s take the following dummy application:

62 Chapter 7. Extend

http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://en.wikipedia.org/wiki/YO!_Sushi

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import cherrypy

class ECommerce(object):
def __init__(self, db):

self.mydb = db

@cherrypy.expose
def save_kart(self, cart_data):

cart = Cart(cart_data)
self.mydb.save(cart)

if __name__ == '__main__':
cherrypy.quickstart(ECommerce(), '/')

The application has a reference to the database but this creates a fairly strong coupling between the database provider
and the application.

Another approach to work around the coupling is by using a pubsub workflow:

import cherrypy

class ECommerce(object):
@cherrypy.expose
def save_kart(self, cart_data):

cart = Cart(cart_data)
cherrypy.engine.publish('db-save', cart)

if __name__ == '__main__':
cherrypy.quickstart(ECommerce(), '/')

In this example, we publish a cart instance to db-save channel. One or many subscribers can then react to that message
and the application doesn’t have to know about them.

Note: This approach is not mandatory and it’s up to you to decide how to design your entities interaction.

Implementation details

CherryPy’s bus implementation is simplistic as it registers functions to channels. Whenever a message is published to
a channel, each registered function is applied with that message passed as a parameter.

The whole behaviour happens synchronously and, in that sense, if a subscriber takes too long to process a message,
the remaining subscribers will be delayed.

CherryPy’s bus is not an advanced pubsub messaging broker system such as provided by zeromq or RabbitMQ. Use it
with the understanding that it may have a cost.

Engine as a pubsub bus

As said earlier, CherryPy is built around a pubsub bus. All entities that the framework manages at runtime are working
on top of a single bus instance, which is named the engine.

The bus implementation therefore provides a set of common channels which describe the application’s lifecycle:

O
|
V

7.1. Server-wide functions 63

http://zeromq.org/
https://www.rabbitmq.com/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

STOPPING --> STOPPED --> EXITING -> X
A A |
| ___ |
| \ |
| V V

STARTED <-- STARTING

The states’ transitions trigger channels to be published to so that subscribers can react to them.

One good example is the HTTP server which will tranisition from a “STOPPED” stated to a “STARTED” state
whenever a message is published to the start channel.

Built-in channels

In order to support its life-cycle, CherryPy defines a set of common channels that will be published to at various states:

• “start”: When the bus is in the “STARTING” state

• “main”: Periodically from the CherryPy’s mainloop

• “stop”: When the bus is in the “STOPPING” state

• “graceful”: When the bus requests a reload of subscribers

• “exit”: When the bus is in the “EXITING” state

This channel will be published to by the engine automatically. Register therefore any subscribers that would need to
react to the transition changes of the engine.

In addition, a few other channels are also published to during the request processing.

• ‘“before_request”: right before the request is processed by CherryPy

• “after_request”: right after it has been processed

Also, from the cherrypy.process.plugins.ThreadManager plugin:

• “acquire_thread”

• “start_thread”

• “stop_thread”

• “release_thread”

Bus API

In order to work with the bus, the implementation provides the following simple API:

• cherrypy.engine.publish(channel, *args):

• The channel parameter is a string identifying the channel to which the message should be sent to

• *args is the message and may contain any valid Python values or objects.

• cherrypy.engine.subscribe(channel, callable):

• The channel parameter is a string identifying the channel the callable will be registered to.

• callable is a Python function or method which signature must match what will be published.

• cherrypy.engine.unsubscribe(channel, callable):

• The channel parameter is a string identifying the channel the callable was registered to.

64 Chapter 7. Extend

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• callable is the Python function or method which was registered.

7.1.2 Plugins

Plugins, simply put, are entities that play with the bus, either by publishing or subscribing to channels, usually both at
the same time.

Important: Plugins are extremely useful whenever you have functionalities:

• Available accross the whole application server

• Associated to the application’s life-cycle

• You want to avoid being strongly coupled to the application

Create a plugin

A typical plugin looks like this:

import cherrypy
from cherrypy.process import wspbus, plugins

class DatabasePlugin(plugins.SimplePlugin):
def __init__(self, bus, db_klass):

plugins.SimplePlugin.__init__(self, bus)
self.db = db_klass()

def start(self):
self.bus.log('Starting up DB access')
self.bus.subscribe("db-save", self.save_it)

def stop(self):
self.bus.log('Stopping down DB access')
self.bus.unsubscribe("db-save", self.save_it)

def save_it(self, entity):
self.db.save(entity)

The cherrypy.process.plugins.SimplePlugin is a helper class provided by CherryPy that will automat-
ically subscribe your start and stop methods to the related channels.

When the start and stop channels are published on, those methods are called accordingly.

Notice then how our plugin subscribes to the db-save channel so that the bus can dispatch messages to the plugin.

Enable a plugin

To enable the plugin, it has to be registered to the the bus as follows:

DatabasePlugin(cherrypy.engine, SQLiteDB).subscribe()

The SQLiteDB here is a fake class that is used as our database provider.

7.1. Server-wide functions 65

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Disable a plugin

You can also unregister a plugin as follows:

someplugin.unsubscribe()

This is often used when you want to prevent the default HTTP server from being started by CherryPy, for instance if
you run on top of a different HTTP server (WSGI capable):

cherrypy.server.unsubscribe()

Let’s see an example using this default application:

import cherrypy

class Root(object):
@cherrypy.expose
def index(self):

return "hello world"

if __name__ == '__main__':
cherrypy.quickstart(Root())

For instance, this is what you would see when running this application:

[27/Apr/2014:13:04:07] ENGINE Listening for SIGHUP.
[27/Apr/2014:13:04:07] ENGINE Listening for SIGTERM.
[27/Apr/2014:13:04:07] ENGINE Listening for SIGUSR1.
[27/Apr/2014:13:04:07] ENGINE Bus STARTING
[27/Apr/2014:13:04:07] ENGINE Started monitor thread 'Autoreloader'.
[27/Apr/2014:13:04:07] ENGINE Started monitor thread '_TimeoutMonitor'.
[27/Apr/2014:13:04:08] ENGINE Serving on http://127.0.0.1:8080
[27/Apr/2014:13:04:08] ENGINE Bus STARTED

Now let’s unsubscribe the HTTP server:

import cherrypy

class Root(object):
@cherrypy.expose
def index(self):

return "hello world"

if __name__ == '__main__':
cherrypy.server.unsubscribe()
cherrypy.quickstart(Root())

This is what we get:

[27/Apr/2014:13:08:06] ENGINE Listening for SIGHUP.
[27/Apr/2014:13:08:06] ENGINE Listening for SIGTERM.
[27/Apr/2014:13:08:06] ENGINE Listening for SIGUSR1.
[27/Apr/2014:13:08:06] ENGINE Bus STARTING
[27/Apr/2014:13:08:06] ENGINE Started monitor thread 'Autoreloader'.
[27/Apr/2014:13:08:06] ENGINE Started monitor thread '_TimeoutMonitor'.
[27/Apr/2014:13:08:06] ENGINE Bus STARTED

As you can see, the server is not started. The missing:

66 Chapter 7. Extend

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

[27/Apr/2014:13:04:08] ENGINE Serving on http://127.0.0.1:8080

7.2 Per-request functions

One of the most common task in a web application development is to tailor the request’s processing to the runtime
context.

Within CherryPy, this is performed via what are called tools. If you are familiar with Django or WSGI middlewares,
CherryPy tools are similar in spirit. They add functions that are applied during the request/response processing.

7.2.1 Hook point

A hook point is a point during the request/response processing.

Here is a quick rundown of the “hook points” that you can hang your tools on:

• “on_start_resource” - The earliest hook; the Request-Line and request headers have been processed and a
dispatcher has set request.handler and request.config.

• “before_request_body” - Tools that are hooked up here run right before the request body would be processed.

• “before_handler” - Right before the request.handler (the exposed callable that was found by the dispatcher) is
called.

• “before_finalize” - This hook is called right after the page handler has been processed and before CherryPy
formats the final response object. It helps you for example to check for what could have been returned by your
page handler and change some headers if needed.

• “on_end_resource” - Processing is complete - the response is ready to be returned. This doesn’t always mean
that the request.handler (the exposed page handler) has executed! It may be a generator. If your tool absolutely
needs to run after the page handler has produced the response body, you need to either use on_end_request in-
stead, or wrap the response.body in a generator which applies your tool as the response body is being generated.

• “before_error_response” - Called right before an error response (status code, body) is set.

• “after_error_response” - Called right after the error response (status code, body) is set and just before the error
response is finalized.

• “on_end_request” - The request/response conversation is over, all data has been written to the client, nothing
more to see here, move along.

7.2.2 Tools

A tool is a simple callable object (function, method, object implementing a __call__ method) that is attached to a hook
point.

Below is a simple tool that is attached to the before_finalize hook point, hence after the page handler was called:

@cherrypy.tools.register('before_finalize')
def logit():

print(cherrypy.request.remote.ip)

Tools can also be created and assigned manually. The decorator registration is equivalent to:

cherrypy.tools.logit = cherrypy.Tool('before_finalize', logit)

7.2. Per-request functions 67

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Using that tool is as simple as follows:

class Root(object):
@cherrypy.expose
@cherrypy.tools.logit()
def index(self):

return "hello world"

Obviously the tool may be declared the other usual ways.

Note: The name of the tool, technically the attribute set to cherrypy.tools, does not have to match the name of the
callable. However, it is that name that will be used in the configuration to refer to that tool.

Stateful tools

The tools mechanism is really flexible and enables rich per-request functionalities.

Straight tools as shown in the previous section are usually good enough. However, if your workflow requires some
sort of state during the request processing, you will probably want a class-based approach:

import time

import cherrypy

class TimingTool(cherrypy.Tool):
def __init__(self):

cherrypy.Tool.__init__(self, 'before_handler',
self.start_timer,
priority=95)

def _setup(self):
cherrypy.Tool._setup(self)
cherrypy.request.hooks.attach('before_finalize',

self.end_timer,
priority=5)

def start_timer(self):
cherrypy.request._time = time.time()

def end_timer(self):
duration = time.time() - cherrypy.request._time
cherrypy.log("Page handler took %.4f" % duration)

cherrypy.tools.timeit = TimingTool()

This tool computes the time taken by the page handler for a given request. It stores the time at which the handler is
about to get called and logs the time difference right after the handler returned its result.

The import bits is that the cherrypy.Tool constructor allows you to register to a hook point but, to attach
the same tool to a different hook point, you must use the cherrypy.request.hooks.attach method. The
cherrypy.Tool._setup method is automatically called by CherryPy when the tool is applied to the request.

Next, let’s see how to use our tool:

class Root(object):
@cherrypy.expose
@cherrypy.tools.timeit()

68 Chapter 7. Extend

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

def index(self):
return "hello world"

Tools ordering

Since you can register many tools at the same hookpoint, you may wonder in which order they will be applied.

CherryPy offers a deterministic, yet so simple, mechanism to do so. Simply set the priority attribute to a value from
1 to 100, lower values providing greater priority.

If you set the same priority for several tools, they will be called in the order you declare them in your configuration.

Toolboxes

All of the builtin CherryPy tools are collected into a Toolbox called cherrypy.tools. It responds to config entries
in the "tools" namespace. You can add your own Tools to this Toolbox as described above.

You can also make your own Toolboxes if you need more modularity. For example, you might create multiple Tools
for working with JSON, or you might publish a set of Tools covering authentication and authorization from which
everyone could benefit (hint, hint). Creating a new Toolbox is as simple as:

import cherrypy

Create a new Toolbox.
newauthtools = cherrypy._cptools.Toolbox("newauth")

Add a Tool to our new Toolbox.
@newauthtools.register('before_request_body')
def check_access(default=False):

if not getattr(cherrypy.request, "userid", default):
raise cherrypy.HTTPError(401)

Then, in your application, use it just like you would use cherrypy.tools, with the additional step of registering
your toolbox with your app. Note that doing so automatically registers the "newauth" config namespace; you can
see the config entries in action below:

import cherrypy

class Root(object):
@cherrypy.expose
def default(self):

return "Hello"

conf = {
'/demo': {

'newauth.check_access.on': True,
'newauth.check_access.default': True,

}
}

app = cherrypy.tree.mount(Root(), config=conf)

7.2.3 Request parameters manipulation

HTTP uses strings to carry data between two endpoints. However your application may make better use of richer
object types. As it wouldn’t be really readable, nor a good idea regarding maintenance, to let each page handler

7.2. Per-request functions 69

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

deserialize data, it’s a common pattern to delegate this functions to tools.

For instance, let’s assume you have a user id in the query-string and some user data stored into a database. You could
retrieve the data, create an object and pass it on to the page handler instead of the user id.

import cherrypy

class UserManager(cherrypy.Tool):
def __init__(self):

cherrypy.Tool.__init__(self, 'before_handler',
self.load, priority=10)

def load(self):
req = cherrypy.request

let's assume we have a db session
attached to the request somehow
db = req.db

retrieve the user id and remove it
from the request parameters
user_id = req.params.pop('user_id')
req.params['user'] = db.get(int(user_id))

cherrypy.tools.user = UserManager()

class Root(object):
@cherrypy.expose
@cherrypy.tools.user()
def index(self, user):

return "hello %s" % user.name

In other words, CherryPy give you the power to:

• inject data, that wasn’t part of the initial request, into the page handler

• remove data as well

• convert data into a different, more useful, object to remove that burden from the page handler itself

7.3 Tailored dispatchers

Dispatching is the art of locating the appropriate page handler for a given request. Usually, dispatching is based on the
request’s URL, the query-string and, sometimes, the request’s method (GET, POST, etc.).

Based on this, CherryPy comes with various dispatchers already.

In some cases however, you will need a little more. Here is an example of dispatcher that will always ensure the
incoming URL leads to a lower-case page handler.

import random
import string

import cherrypy
from cherrypy._cpdispatch import Dispatcher

class StringGenerator(object):
@cherrypy.expose

70 Chapter 7. Extend

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

def generate(self, length=8):
return ''.join(random.sample(string.hexdigits, int(length)))

class ForceLowerDispatcher(Dispatcher):
def __call__(self, path_info):

return Dispatcher.__call__(self, path_info.lower())

if __name__ == '__main__':
conf = {

'/': {
'request.dispatch': ForceLowerDispatcher(),

}
}
cherrypy.quickstart(StringGenerator(), '/', conf)

Once you run this snipper, go to:

• http://localhost:8080/generate?length=8

• http://localhost:8080/GENerAte?length=8

In both cases, you will be led to the generate page handler. Without our home-made dispatcher, the second one would
fail and return a 404 error (RFC 2616#sec10.4.5).

7.3.1 Tool or dispatcher?

In the previous example, why not simply use a tool? Well, the sooner a tool can be called is always after the page
handler has been found. In our example, it would be already too late as the default dispatcher would have not even
found a match for /GENerAte.

A dispatcher exists mostly to determine the best page handler to serve the requested resource.

On ther other hand, tools are there to adapt the request’s processing to the runtime context of the application and the
request’s content.

Usually, you will have to write a dispatcher only if you have a very specific use case to locate the most adequate page
handler. Otherwise, the default ones will likely suffice.

7.4 Request body processors

Since its 3.2 release, CherryPy provides a really elegant and powerful mechanism to deal with a request’s body based
on its mimetype. Refer to the cherrypy._cpreqbody module to understand how to implement your own proces-
sors.

7.4. Request body processors 71

http://localhost:8080/generate?length=8
http://localhost:8080/GENerAte?length=8
https://tools.ietf.org/html/rfc2616.html#sec10.4.5

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

72 Chapter 7. Extend

CHAPTER 8

Deploy

CherryPy stands on its own, but as an application server, it is often located in shared or complex environments. For
this reason, it is not uncommon to run CherryPy behind a reverse proxy or use other servers to host the application.

Note: CherryPy’s server has proven reliable and fast enough for years now. If the volume of traffic you receive is
average, it will do well enough on its own. Nonetheless, it is common to delegate the serving of static content to more
capable servers such as nginx or CDN.

Contents

• Deploy
– Run as a daemon
– Run as a different user
– PID files
– Systemd socket activation
– Control via Supervisord
– SSL support
– WSGI servers

* Embedding into another WSGI framework
* Tornado
* Twisted
* uwsgi

– Virtual Hosting
– Reverse-proxying

* Apache
* Nginx

8.1 Run as a daemon

CherryPy allows you to easily decouple the current process from the parent environment, using the traditional double-
fork:

from cherrypy.process.plugins import Daemonizer
d = Daemonizer(cherrypy.engine)
d.subscribe()

73

http://nginx.org

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Note: This engine plugin is only available on Unix and similar systems which provide fork().

If a startup error occurs in the forked children, the return code from the parent process will still be 0. Errors in the
initial daemonizing process still return proper exit codes, but errors after the fork won’t. Therefore, if you use this
plugin to daemonize, don’t use the return code as an accurate indicator of whether the process fully started. In fact,
that return code only indicates if the process successfully finished the first fork.

The plugin takes optional arguments to redirect standard streams: stdin, stdout, and stderr. By default, these
are all redirected to /dev/null, but you’re free to send them to log files or elsewhere.

Warning: You should be careful to not start any threads before this plugin runs. The plugin will warn if you do
so, because ”...the effects of calling functions that require certain resources between the call to fork() and the call
to an exec function are undefined”. (ref). It is for this reason that the Server plugin runs at priority 75 (it starts
worker threads), which is later than the default priority of 65 for the Daemonizer.

8.2 Run as a different user

Use this engine plugin to start your CherryPy site as root (for example, to listen on a privileged port like 80) and then
reduce privileges to something more restricted.

This priority of this plugin’s “start” listener is slightly higher than the priority for server.start in order to facilitate the
most common use: starting on a low port (which requires root) and then dropping to another user.

DropPrivileges(cherrypy.engine, uid=1000, gid=1000).subscribe()

8.3 PID files

The PIDFile engine plugin is pretty straightforward: it writes the process id to a file on start, and deletes the file on
exit. You must provide a ‘pidfile’ argument, preferably an absolute path:

PIDFile(cherrypy.engine, '/var/run/myapp.pid').subscribe()

8.4 Systemd socket activation

Socket Activation is a systemd feature that allows to setup a system so that the systemd will sit on a port and start
services ‘on demand’ (a little bit like inetd and xinetd used to do).

CherryPy has built-in socket activation support, if run from a systemd service file it will detect the LISTEN_PID
environment variable to know that it should consider fd 3 to be the passed socket.

To read more about socket activation: http://0pointer.de/blog/projects/socket-activation.html

8.5 Control via Supervisord

Supervisord is a powerful process control and management tool that can perform a lot of tasks around process moni-
toring.

Below is a simple supervisor configuration for your CherryPy application.

74 Chapter 8. Deploy

http://www.opengroup.org/onlinepubs/000095399/functions/fork.html
http://0pointer.de/blog/projects/socket-activation.html
http://supervisord.org

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

[unix_http_server]
file=/tmp/supervisor.sock

[supervisord]
logfile=/tmp/supervisord.log ; (main log file;default $CWD/supervisord.log)
logfile_maxbytes=50MB ; (max main logfile bytes b4 rotation;default 50MB)
logfile_backups=10 ; (num of main logfile rotation backups;default 10)
loglevel=info ; (log level;default info; others: debug,warn,trace)
pidfile=/tmp/supervisord.pid ; (supervisord pidfile;default supervisord.pid)
nodaemon=false ; (start in foreground if true;default false)
minfds=1024 ; (min. avail startup file descriptors;default 1024)
minprocs=200 ; (min. avail process descriptors;default 200)

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:myapp]
command=python server.py
environment=PYTHONPATH=.
directory=.

This could control your server via the server.py module as the application entry point.

import cherrypy

class Root(object):
@cherrypy.expose
def index(self):

return "Hello World!"

cherrypy.config.update({'server.socket_port': 8090,
'engine.autoreload.on': False,
'log.access_file': './access.log',
'log.error_file': './error.log'})

cherrypy.quickstart(Root())

To take the configuration (assuming it was saved in a file called supervisor.conf) into account:

$ supervisord -c supervisord.conf
$ supervisorctl update

Now, you can point your browser at http://localhost:8090/ and it will display Hello World!.

To stop supervisor, type:

$ supervisorctl shutdown

This will obviously shutdown your application.

8.6 SSL support

Note: You may want to test your server for SSL using the services from Qualys, Inc.

8.6. SSL support 75

http://localhost:8090/
https://www.ssllabs.com/ssltest/index.html

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

CherryPy can encrypt connections using SSL to create an https connection. This keeps your web traffic secure. Here’s
how.

1. Generate a private key. We’ll use openssl and follow the OpenSSL Keys HOWTO.:

$ openssl genrsa -out privkey.pem 2048

You can create either a key that requires a password to use, or one without a password. Protecting your private key with
a password is much more secure, but requires that you enter the password every time you use the key. For example,
you may have to enter the password when you start or restart your CherryPy server. This may or may not be feasible,
depending on your setup.

If you want to require a password, add one of the -aes128, -aes192 or -aes256 switches to the command above.
You should not use any of the DES, 3DES, or SEED algoritms to protect your password, as they are insecure.

SSL Labs recommends using 2048-bit RSA keys for security (see references section at the end).

2. Generate a certificate. We’ll use openssl and follow the OpenSSL Certificates HOWTO. Let’s start off with a
self-signed certificate for testing:

$ openssl req -new -x509 -days 365 -key privkey.pem -out cert.pem

openssl will then ask you a series of questions. You can enter whatever values are applicable, or leave most fields
blank. The one field you must fill in is the ‘Common Name’: enter the hostname you will use to access your site. If
you are just creating a certificate to test on your own machine and you access the server by typing ‘localhost’ into your
browser, enter the Common Name ‘localhost’.

3. Decide whether you want to use python’s built-in SSL library, or the pyOpenSSL library. CherryPy supports
either.

(a) Built-in. To use python’s built-in SSL, add the following line to your CherryPy config:

cherrypy.server.ssl_module = 'builtin'

(a) pyOpenSSL. Because python did not have a built-in SSL library when CherryPy was first created,
the default setting is to use pyOpenSSL. To use it you’ll need to install it (we could recommend
you install cython first):

$ pip install cython, pyOpenSSL

2. Add the following lines in your CherryPy config to point to your certificate files:

cherrypy.server.ssl_certificate = "cert.pem"
cherrypy.server.ssl_private_key = "privkey.pem"

5. If you have a certificate chain at hand, you can also specify it:

cherrypy.server.ssl_certificate_chain = "certchain.perm"

6. Start your CherryPy server normally. Note that if you are debugging locally and/or using a self-signed certificate,
your browser may show you security warnings.

8.7 WSGI servers

8.7.1 Embedding into another WSGI framework

Though CherryPy comes with a very reliable and fast enough HTTP server, you may wish to integrate your CherryPy
application within a different framework. To do so, we will benefit from the WSGI interface defined in PEP 333 and
PEP 3333.

76 Chapter 8. Deploy

https://www.openssl.org/docs/HOWTO/keys.txt
https://www.openssl.org/docs/HOWTO/certificates.txt
http://cython.org/
https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Note that you should follow some basic rules when embedding CherryPy in a third-party WSGI server:

• If you rely on the “main” channel to be published on, as it would happen within the CherryPy’s mainloop, you
should find a way to publish to it within the other framework’s mainloop.

• Start the CherryPy’s engine. This will publish to the “start” channel of the bus.

cherrypy.engine.start()

• Stop the CherryPy’s engine when you terminate. This will publish to the “stop” channel of the bus.

cherrypy.engine.stop()

• Do not call cherrypy.engine.block().

• Disable the built-in HTTP server since it will not be used.

cherrypy.server.unsubscribe()

• Disable autoreload. Usually other frameworks won’t react well to it, or sometimes, provide the same feature.

cherrypy.config.update({'engine.autoreload.on': False})

• Disable CherryPy signals handling. This may not be needed, it depends on how the other framework handles
them.

cherrypy.engine.signals.subscribe()

• Use the "embedded" environment configuration scheme.

cherrypy.config.update({'environment': 'embedded'})

Essentially this will disable the following:

– Stdout logging

– Autoreloader

– Configuration checker

– Headers logging on error

– Tracebacks in error

– Mismatched params error during dispatching

– Signals (SIGHUP, SIGTERM)

8.7.2 Tornado

You can use tornado HTTP server as follow:

import cherrypy

class Root(object):
@cherrypy.expose
def index(self):

return "Hello World!"

if __name__ == '__main__':
import tornado
import tornado.httpserver
import tornado.wsgi

8.7. WSGI servers 77

http://www.tornadoweb.org/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

our WSGI application
wsgiapp = cherrypy.tree.mount(Root())

Disable the autoreload which won't play well
cherrypy.config.update({'engine.autoreload.on': False})

let's not start the CherryPy HTTP server
cherrypy.server.unsubscribe()

use CherryPy's signal handling
cherrypy.engine.signals.subscribe()

Prevent CherryPy logs to be propagated
to the Tornado logger
cherrypy.log.error_log.propagate = False

Run the engine but don't block on it
cherrypy.engine.start()

Run thr tornado stack
container = tornado.wsgi.WSGIContainer(wsgiapp)
http_server = tornado.httpserver.HTTPServer(container)
http_server.listen(8080)
Publish to the CherryPy engine as if
we were using its mainloop
tornado.ioloop.PeriodicCallback(lambda: cherrypy.engine.publish('main'), 100).start()
tornado.ioloop.IOLoop.instance().start()

8.7.3 Twisted

You can use Twisted HTTP server as follow:

import cherrypy

from twisted.web.wsgi import WSGIResource
from twisted.internet import reactor
from twisted.internet import task

Our CherryPy application
class Root(object):

@cherrypy.expose
def index(self):

return "hello world"

Create our WSGI app from the CherryPy application
wsgiapp = cherrypy.tree.mount(Root())

Configure the CherryPy's app server
Disable the autoreload which won't play well
cherrypy.config.update({'engine.autoreload.on': False})

We will be using Twisted HTTP server so let's
disable the CherryPy's HTTP server entirely
cherrypy.server.unsubscribe()

If you'd rather use CherryPy's signal handler

78 Chapter 8. Deploy

https://twistedmatrix.com/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

Uncomment the next line. I don't know how well this
will play with Twisted however
#cherrypy.engine.signals.subscribe()

Publish periodically onto the 'main' channel as the bus mainloop would do
task.LoopingCall(lambda: cherrypy.engine.publish('main')).start(0.1)

Tie our app to Twisted
reactor.addSystemEventTrigger('after', 'startup', cherrypy.engine.start)
reactor.addSystemEventTrigger('before', 'shutdown', cherrypy.engine.exit)
resource = WSGIResource(reactor, reactor.getThreadPool(), wsgiapp)

Notice how we attach the bus methods to the Twisted’s own lifecycle.

Save that code into a module named cptw.py and run it as follows:

$ twistd -n web --port 8080 --wsgi cptw.wsgiapp

8.7.4 uwsgi

You can use uwsgi HTTP server as follow:

import cherrypy

Our CherryPy application
class Root(object):

@cherrypy.expose
def index(self):

return "hello world"

cherrypy.config.update({'engine.autoreload.on': False})
cherrypy.server.unsubscribe()
cherrypy.engine.start()

wsgiapp = cherrypy.tree.mount(Root())

Save this into a Python module called mymod.py and run it as follows:

$ uwsgi --socket 127.0.0.1:8080 --protocol=http --wsgi-file mymod.py --callable wsgiapp

8.8 Virtual Hosting

CherryPy has support for virtual-hosting. It does so through a dispatchers that locate the appropriate resource based
on the requested domain.

Below is a simple example for it:

import cherrypy

class Root(object):
def __init__(self):

self.app1 = App1()
self.app2 = App2()

class App1(object):
@cherrypy.expose

8.8. Virtual Hosting 79

http://projects.unbit.it/uwsgi/

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

def index(self):
return "Hello world from app1"

class App2(object):
@cherrypy.expose
def index(self):

return "Hello world from app2"

if __name__ == '__main__':
hostmap = {

'company.com:8080': '/app1',
'home.net:8080': '/app2',

}

config = {
'request.dispatch': cherrypy.dispatch.VirtualHost(**hostmap)

}

cherrypy.quickstart(Root(), '/', {'/': config})

In this example, we declare two domains and their ports:

• company.com:8080

• home.net:8080

Thanks to the cherrypy.dispatch.VirtualHost dispatcher, we tell CherryPy which application to dispatch
to when a request arrives. The dispatcher looks up the requested domain and call the according application.

Note: To test this example, simply add the following rules to your hosts file:

127.0.0.1 company.com
127.0.0.1 home.net

8.9 Reverse-proxying

8.9.1 Apache

8.9.2 Nginx

nginx is a fast and modern HTTP server with a small footprint. It is a popular choice as a reverse proxy to application
servers such as CherryPy.

This section will not cover the whole range of features nginx provides. Instead, it will simply provide you with a basic
configuration that can be a good starting point.

1 upstream apps {
2 server 127.0.0.1:8080;
3 server 127.0.0.1:8081;
4 }
5

6 gzip_http_version 1.0;
7 gzip_proxied any;
8 gzip_min_length 500;
9 gzip_disable "MSIE [1-6]\.";

80 Chapter 8. Deploy

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

10 gzip_types text/plain text/xml text/css
11 text/javascript
12 application/javascript;
13

14 server {
15 listen 80;
16 server_name www.example.com;
17

18 access_log /app/logs/www.example.com.log combined;
19 error_log /app/logs/www.example.com.log;
20

21 location ^~ /static/ {
22 root /app/static/;
23 }
24

25 location / {
26 proxy_pass http://apps;
27 proxy_redirect off;
28 proxy_set_header Host $host;
29 proxy_set_header X-Real-IP $remote_addr;
30 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
31 proxy_set_header X-Forwarded-Host $server_name;
32 }
33 }

Edit this configuration to match your own paths. Then, save this configuration into a file under
/etc/nginx/conf.d/ (assuming Ubuntu). The filename is irrelevant. Then run the following commands:

$ sudo service nginx stop
$ sudo service nginx start

Hopefully, this will be enough to forward requests hitting the nginx frontend to your CherryPy application. The
upstream block defines the addresses of your CherryPy instances.

It shows that you can load-balance between two application servers. Refer to the nginx documentation to understand
how this achieved.

upstream apps {
server 127.0.0.1:8080;
server 127.0.0.1:8081;

}

Later on, this block is used to define the reverse proxy section.

Now, let’s see our application:

import cherrypy

class Root(object):
@cherrypy.expose
def index(self):

return "hello world"

if __name__ == '__main__':
cherrypy.config.update({

'server.socket_port': 8080,
'tools.proxy.on': True,
'tools.proxy.base': 'http://www.example.com'

})
cherrypy.quickstart(Root())

8.9. Reverse-proxying 81

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

If you run two instances of this code, one on each port defined in the nginx section, you will be able to reach both of
them via the load-balancing done by nginx.

Notice how we define the proxy tool. It is not mandatory and used only so that the CherryPy request knows about the
true client’s address. Otherwise, it would know only about the nginx’s own address. This is most visible in the logs.

The base attribute should match the server_name section of the nginx configuration.

82 Chapter 8. Deploy

CHAPTER 9

Support

You’ve read the documentation and you’ve brushed up on the basics of Python and web development, but you still
could use some help. Users have several options.

9.1 I have a question

If you have a question and cannot find an answer for it in issues or the the documentation, please create an issue.

Questions and their answers have great value for the community, and a tip is to really put the effort in and write a good
explanation, you will get better and quicker answers. Examples are strongly encouraged.

9.2 I have found a bug

If no one have already, create an issue. Be sure to provide ample information, remember that any help won’t be better
than your explanation.

Unless something is very obviously wrong, you are likely to be asked to provide a working example, displaying the
erroneous behaviour.

Note: While this might feel troublesome, a tip is to always make a separate example that have the same dependencies
as your project. It is great for troubleshooting those annoying problems where you don’t know if the problem is at
your end or the components. Also, you can then easily fork and provide as an example. You will get answers and
resolutions way quicker. Also, many other open source projects require it.

9.3 I have a feature request

Good stuff! Please create an issue! Note: Features are more likely to be added the more users they seem to benefit.

9.4 I want to converse

The gitter page is good for when you want to discuss in real time or get pointed in the right direction.

83

http://docs.cherrypy.org/en/latest/
https://github.com/cherrypy/cherrypy/issues/new
https://github.com/cherrypy/cherrypy/issues/new
https://github.com/cherrypy/cherrypy/issues/new
https://gitter.im/cherrypy/cherrypy

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

84 Chapter 9. Support

CHAPTER 10

Contribute

CherryPy is a community-maintained, open-source project hosted at Github. The project active encourages aspiring
and experienced users to dive in and add their best contribution to the project.

How can you contribute? Well, first search the docs and the project page to see if someone has already reported your
issue.

10.1 StackOverflow

On StackOverflow, there are questions tagged with ‘cherrypy’. Answer unanswered questions, add an improved an-
swer, clarify an answer with a comment, or ask more meaningful questions there. Earn reputation and share experience.

CherryPy also maintains a StackOverflow Wiki where anyone can publish tricks and techniques and refine others.

10.2 Filing Bug Reports

If you find a bug, an issue where the product doesn’t behave as you expect, you may file a bug report at the project page.
Be sure to include what your expectation was, what happened instead, details about your system that might be relevant,
and steps that someone else could take to replicate your finding. The more detailed and exact your description, the
better one of the volunteers on the project may be able to help resolve your issue.

10.3 Fixing Bugs

CherryPy has a number of open, reported issues. Some of them are complicated and difficult, but others are more
straightforward and shovel-ready. Feel free to find one that you think you can solve or introduce yourself and ask for
guidance in our gitter channel.

As you work through the issue and commit changes to your clone of the repository, be sure to add issue references to
your changes (like “Fixes #999” or “Ref #999”) so your changes link to the issue and vice-versa.

10.4 Writing Pull Requests

To contribute, first read How to write the perfect pull request and file your contribution with the CherryPy Project
page.

85

https://docs.cherrypy.org
https://github.com/cherrypy/cherrypy
https://stackoverflow.com
http://stackoverflow.com/documentation/cherrypy/topics
https://github.com/cherrypy/cherrypy
https://github.com/cherrypy/cherrypy/issues
https://gitter.im/cherrypy/cherrypy
http://blog.jaraco.com/how-to-write-perfect-pull-request/
https://github.com/cherrypy/cherrypy
https://github.com/cherrypy/cherrypy

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

86 Chapter 10. Contribute

CHAPTER 11

Testing

• To run the regression tests, first install tox:

pip install 'tox>=2.5'

then run it

tox

• To run individual tests type:

tox -- -k test_foo

87

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

88 Chapter 11. Testing

CHAPTER 12

Glossary

application A CherryPy application is simply a class instance containing at least one page handler.

controller Loose name commonly given to a class owning at least one exposed method

exposed A Python function or method which has an attribute called exposed set to True. This attribute can be set
directly or via the cherrypy.expose() decorator.

@cherrypy.expose
def method(...):

...

is equivalent to:

def method(...):
...

method.exposed = True

page handler Name commonly given to an exposed method

89

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

90 Chapter 12. Glossary

CHAPTER 13

History

13.1 v10.0.0

20 Jan 2017

• #1332: CherryPy now uses portend for checking and waiting on ports for startup and teardown checks. The
following names are no longer present:

– cherrypy._cpserver.client_host

– cherrypy._cpserver.check_port

– cherrypy._cpserver.wait_for_free_port

– cherrypy._cpserver.wait_for_occupied_port

– cherrypy.process.servers.check_port

– cherrypy.process.servers.wait_for_free_port

– cherrypy.process.servers.wait_for_occupied_port

Use this functionality from the portend package directly.

13.2 v9.0.0

19 Jan 2017

• #1481: Move functionality from cherrypy.wsgiserver to the cheroot 5.0 project.

13.3 v8.9.1

16 Jan 2017

• #1537: Restore dependency on pywin32 for Python 3.6.

13.4 v8.9.0

13 Jan 2017

91

http://www.cherrypy.org/issues/1332
https://pypi.org/project/portend
http://www.cherrypy.org/issues/1481
https://pypi.org/project/Cheroot/5.0.1/
http://www.cherrypy.org/issues/1537

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• #1547: Replaced cherryd distutils script with a setuptools console entry point.

When running CherryPy in daemon mode, the forked process no longer changes directory to /. If that behavior
is something on which your application relied and should rely, please file a ticket with the project.

13.5 v8.8.0

09 Jan 2017

• #1528: Allow a timeout of 0 to server.

13.6 v8.7.0

31 Dec 2016

• #645: Setting a bind port of 0 will bind to an ephemeral port.

13.7 v8.6.0

27 Dec 2016

• #1538 and #1090: Removed cruft from the setup script and instead rely on include_package_data to ensure the
relevant files are included in the package. Note, this change does cause LICENSE.md no longer to be included
in the installed package.

13.8 v8.5.0

26 Dec 2016

• The pyOpenSSL support is now included on Python 3 builds, removing the last disparity between Python 2 and
Python 3 in the CherryPy package. This change is one small step in consideration of #1399. This change also
fixes RPM builds, as reported in #1149.

13.9 v8.4.0

26 Dec 2016

• #1532: Also release wheels for Python 2, enabling offline installation.

13.10 v8.3.1

25 Dec 2016

• #1537: Disable dependency on pypiwin32 on Python 3.6 until a viable build of pypiwin32 can be made on that
Python version.

92 Chapter 13. History

http://www.cherrypy.org/issues/1547
http://www.cherrypy.org/issues/1528
http://www.cherrypy.org/issues/645
http://www.cherrypy.org/issues/1538
http://www.cherrypy.org/issues/1090
http://setuptools.readthedocs.io/en/latest/setuptools.html?highlight=include_package_data#new-and-changed-setup-keywords
http://www.cherrypy.org/issues/1399
http://www.cherrypy.org/issues/1149
http://www.cherrypy.org/issues/1532
http://www.cherrypy.org/issues/1537

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

13.11 v8.3.0

24 Dec 2016

• Consolidated some documentation and include the more concise readme in the package long description, as
found on PyPI.

13.12 v8.2.0

23 Dec 2016

• #1463: CherryPy tests are now run under pytest and invoked using tox.

13.13 v8.1.3

16 Dec 2016

• #1530: Fix the issue with TypeError being swallowed by decorated handlers.

13.14 v8.1.2

28 Sep 2016

• #1508

13.15 v8.1.1

27 Sep 2016

• #1497: Handle errors thrown by ssl_module: ’builtin’ when client opens connection to HTTPS port
using HTTP.

• #1350: Fix regression introduced in v6.1.0 where environment construction for WSGIGateway_u0 was passing
one parameter and not two.

• Other miscellaneous fixes.

13.16 v8.1.0

04 Sep 2016

• #1473: HTTPError now also works as a context manager.

• #1487: The sessions tool now accepts a storage_class parameter, which supersedes the new deprecated
storage_type parameter. The storage_class should be the actual Session subclass to be used.

• Releases now use setuptools_scm to track the release versions. Therefore, releases can be cut by simply
tagging a commit in the repo. Versions numbers are now stored in exactly one place.

13.11. v8.3.0 93

http://www.cherrypy.org/issues/1463
http://www.cherrypy.org/issues/1530
http://www.cherrypy.org/issues/1508
http://www.cherrypy.org/issues/1497
http://www.cherrypy.org/issues/1350
http://www.cherrypy.org/issues/1473
http://www.cherrypy.org/issues/1487

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

13.17 v8.0.1

03 Sep 2016

• #1489 via #1493: Additionally reject anything else that’s not bytes.

• #1492: systemd socket activation.

13.18 v8.0.0

02 Sep 2016

• #1483: Remove Deprecated constructs:

– cherrypy.lib.http module.

– unrepr, modules, and attributes in cherrypy.lib.

• #1476: Drop support for python-memcached<1.58

• #1401: Handle NoSSLErrors.

• #1489: In wsgiserver.WSGIGateway.respond, the application must now yield bytes and not text, as the
spec requires. If text is received, it will now raise a ValueError instead of silently encoding using ISO-8859-1.

• Removed unicode filename from the package, working around pip #3894 and setuptools #704.

13.19 7.1.0

1458: Implement systemd’s socket activation mechanism for CherryPy servers, based on work sponsored by
Endless Computers.

Socket Activation allows one to setup a system so that systemd will sit on a port and start services ‘on demand’
(a little bit like inetd and xinetd used to do).

13.20 7.0.0

Removed the long-deprecated backward compatibility for legacy config keys in the engine. Use the config for the
namespaced-plugins instead:

• autoreload_on -> autoreload.on

• autoreload_frequency -> autoreload.frequency

• autoreload_match -> autoreload.match

• reload_files -> autoreload.files

• deadlock_poll_frequency -> timeout_monitor.frequency

13.21 6.2.1

1460: Fix KeyError in Bus.publish when signal handlers set in config.

94 Chapter 13. History

http://www.cherrypy.org/issues/1489
http://www.cherrypy.org/issues/1493
http://www.cherrypy.org/issues/1492
http://www.cherrypy.org/issues/1483
http://www.cherrypy.org/issues/1476
http://www.cherrypy.org/issues/1401
http://www.cherrypy.org/issues/1489
http://www.cherrypy.org/issues/3894
http://www.cherrypy.org/issues/704

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

13.22 6.2.0

• #1441: Added tool to automatically convert request params based on type annotations (primarily in Python 3).
For example:

@cherrypy.tools.params() def resource(self, limit: int):

assert isinstance(limit, int)

13.23 6.1.1

• Issue #1411: Fix issue where autoreload fails when the host interpreter for CherryPy was launched using
python -m.

13.24 6.1.0

• Combined wsgiserver2 and wsgiserver3 modules into a single module, cherrypy.wsgiserver.

13.25 6.0.2

• Issue #1445: Correct additional typos.

13.26 6.0.1

• Issue #1444: Correct typos in @cherrypy.expose decorators.

13.27 6.0.0

• Setuptools is now required to build CherryPy. Pure distutils installs are no longer supported. This change allows
CherryPy to depend on other packages and re-use code from them. It’s still possible to install pre-built CherryPy
packages (wheels) using pip without Setuptools.

• six is now a requirement and subsequent requirements will be declared in the project metadata.

• #1440: Back out changes from #1432 attempting to fix redirects with Unicode URLs, as it also had the unin-
tended consequence of causing the ‘Location’ to be bytes on Python 3.

• cherrypy.expose now works on classes.

• cherrypy.config decorator is now used throughout the code internally.

13.28 5.6.0

• @cherrypy.expose now will also set the exposed attribute on a class.

• Rewrote all tutorials and internal usage to prefer the decorator usage of expose rather than setting the attribute
explicitly.

13.22. 6.2.0 95

http://www.cherrypy.org/issues/1441
http://www.cherrypy.org/issues/1411
http://www.cherrypy.org/issues/1445
http://www.cherrypy.org/issues/1444
https://pypi.io/project/six
http://www.cherrypy.org/issues/1440
http://www.cherrypy.org/issues/1432

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• Removed test-specific code from tutorials.

13.29 5.5.0

• #1397: Fix for filenames with semicolons and quote characters in filenames found in headers.

• #1311: Added decorator for registering tools.

• #1194: Use simpler encoding rules for SCRIPT_NAME and PATH_INFO environment variables in CherryPy
Tree allowing non-latin characters to pass even when wsgi.version is not u.0.

• #1352: Ensure that multipart fields are decoded even when cached in a file.

13.30 5.4.0

• cherrypy.test.webtest.WebCase now honors a ‘WEBTEST_INTERACTIVE’ environment variable
to disable interactive tests (still enabled by default). Set to ‘0’ or ‘false’ or ‘False’ to disable interactive tests.

• #1408: Fix AttributeError when listiterator was accessed using the next attribute.

• #748: Removed cherrypy.lib.sessions.PostgresqlSession.

• #1432: Fix errors with redirects to Unicode URLs.

13.31 5.3.0

• #1202: Add support for specifying a certificate authority when serving SSL using the built-in SSL support.

• Use ssl.create_default_context when available.

• #1392: Catch platform-specific socket errors on OS X.

• #1386: Fix parsing of URIs containing :// in the path part.

13.32 5.2.0

• #1410: Moved hosting to Github (cherrypy/cherrypy.

13.33 5.1.0

10 Mar 2016

• Bugfix issue #1315 for test_HTTP11_pipelining test in Python 3.5

• Bugfix issue #1382 regarding the keyword arguments support for Python 3 on the config file.

• Bugfix issue #1406 for test_2_KeyboardInterrupt test in Python 3.5. by monkey patching the
HTTPRequest given a bug on CPython that is affecting the testsuite (https://bugs.python.org/issue23377).

• Add additional parameter raise_subcls to the tests helpers openURL and CPWebCase.getPage to have
finer control on which exceptions can be raised.

• Add support for direct keywords on the calls (e.g. foo=bar) on the config file under Python 3.

96 Chapter 13. History

http://www.cherrypy.org/issues/1397
http://www.cherrypy.org/issues/1311
http://www.cherrypy.org/issues/1194
http://www.cherrypy.org/issues/1352
http://www.cherrypy.org/issues/1408
http://www.cherrypy.org/issues/748
http://www.cherrypy.org/issues/1432
http://www.cherrypy.org/issues/1202
http://www.cherrypy.org/issues/1392
http://www.cherrypy.org/issues/1386
http://www.cherrypy.org/issues/1410
https://github.com/cherrypy/cherrypy
http://www.cherrypy.org/issues/1315
http://www.cherrypy.org/issues/1382
http://www.cherrypy.org/issues/1406
https://bugs.python.org/issue23377

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• Add additional validation to determine if the process is running as a daemon on
cherrypy.process.plugins.SignalHandler to allow the execution of the testsuite under CI
tools.

13.34 5.0.1

05 Feb 2016

• Bugfix for NameError following #94.

13.35 5.0.0

04 Feb 2016

• Removed deprecated support for ssl_certificate and ssl_private_key attributes and implicit con-
struction of SSL adapter on Python 2 WSGI servers.

• Default SSL Adapter on Python 2 is the builtin SSL adapter, matching Python 3 behavior.

• Pull request #94: In proxy tool, defer to Host header for resolving the base if no base is supplied.

13.36 4.0.0

19 Dec 2015

• Drop support for Python 2.5 and earlier.

• No longer build Windows installers by default.

13.37 3.8.2

17 Dec 2015

• Pull Request #116: Correct InternalServerError when null bytes in static file path. Now responds with 404
instead.

13.38 3.8.0

26 Jun 2015

• Pull Request #96: Pass exc_info to logger as keyword rather than formatting the error and injecting into the
message.

13.39 3.7.0

24 Apr 2015

• CherryPy daemon may now be invoked with python -m cherrypy in addition to the cherryd script.

13.34. 5.0.1 97

http://www.cherrypy.org/issues/94
http://www.cherrypy.org/issues/94
http://www.cherrypy.org/issues/116
http://www.cherrypy.org/issues/96

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

• Issue #1298: Fix SSL handling on CPython 2.7 with builtin SSL module and pyOpenSSL 0.14. This change
will break PyPy for now.

• Several documentation fixes.

13.40 3.6.0

14 Sep 2014

• Fixed HTTP range headers for negative length larger than content size.

• Disabled universal wheel generation as wsgiserver has Python duality.

• Pull Request #42: Correct TypeError in check_auth when encrypt is used.

• Pull Request #59: Correct signature of HandlerWrapperTool.

• Pull Request #60: Fix error in SessionAuth where login_screen was incorrectly used.

• Issue #1077: Support keyword-only arguments in dispatchers (Python 3).

• Issue #1019: Allow logging host name in the access log.

• Pull Request #50: Fixed race condition in session cleanup.

13.41 3.5.0

27 Jun 2014

• Issue #1301: When the incoming queue is full, now reject additional connections. This functionality was added
to CherryPy 3.0, but unintentionally lost in 3.1.

13.42 3.4.0

27 Jun 2014

• Miscellaneous quality improvements.

13.43 3.3.0

16 Apr 2014

CherryPy adopts semver.

CherryPy is a pythonic, object-oriented web framework.

CherryPy allows developers to build web applications in much the same way they would build any other object-oriented
Python program. This results in smaller source code developed in less time.

CherryPy is now more than ten years old and it is has proven to be fast and reliable. It is being used in production by
many sites, from the simplest to the most demanding.

A CherryPy application typically looks like this:

98 Chapter 13. History

http://www.cherrypy.org/issues/1298
http://www.cherrypy.org/issues/42
http://www.cherrypy.org/issues/59
http://www.cherrypy.org/issues/60
http://www.cherrypy.org/issues/1077
http://www.cherrypy.org/issues/1019
http://www.cherrypy.org/issues/50
http://www.cherrypy.org/issues/1301
http://www.cherrypy.org

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

import cherrypy

class HelloWorld(object):
@cherrypy.expose
def index(self):

return "Hello World!"

cherrypy.quickstart(HelloWorld())

In order to make the most of CherryPy, you should start with the tutorials that will lead you through the most common
aspects of the framework. Once done, you will probably want to browse through the basics and advanced sections
that will demonstrate how to implement certain operations. Finally, you will want to carefully read the configuration
and extend sections that go in-depth regarding the powerful features provided by the framework.

Above all, have fun with your application!

13.43. 3.3.0 99

CherryPy Documentation, Release 10.0.1.dev2+ng34d9d70.d20170120

100 Chapter 13. History

Index

Symbols
-P, –Path

cherryd command line option, 7
-c, –config

cherryd command line option, 6
-d

cherryd command line option, 6
-e, –environment

cherryd command line option, 7
-f

cherryd command line option, 7
-i, –import

cherryd command line option, 7
-p, –pidfile

cherryd command line option, 7
-s

cherryd command line option, 7

A
application, 89

C
cherryd command line option

-P, –Path, 7
-c, –config, 6
-d, 6
-e, –environment, 7
-f, 7
-i, –import, 7
-p, –pidfile, 7
-s, 7

controller, 89
Ctrl-C, 47

E
exposed, 89

F
FastCGI, 7

P
page handler, 89
PID file, 7
Python Enhancement Proposals

PEP 249, 50
PEP 333, 48, 49, 76
PEP 3333, 48, 49, 76
PEP 343, 59

R
RFC

RFC 2616, 11
RFC 2616#sec10.4.5, 71
RFC 2617, 37

S
SCGI, 7
shutdown, 47

W
Windows, 47

101

	Foreword
	Why CherryPy?
	Success Stories

	Installation
	Requirements
	Supported python version
	Installing
	Run it

	Tutorials
	Tutorial 1: A basic web application
	Tutorial 2: Different URLs lead to different functions
	Tutorial 3: My URLs have parameters
	Tutorial 4: Submit this form
	Tutorial 5: Track my end-user's activity
	Tutorial 6: What about my javascripts, CSS and images?
	Tutorial 7: Give us a REST
	Tutorial 8: Make it smoother with Ajax
	Tutorial 9: Data is all my life
	Tutorial 10: Make it a modern single-page application with React.js
	Tutorial 11: Organize my code

	Basics
	The one-minute application example
	Hosting one or more applications
	Logging
	Configuring
	Cookies
	Using sessions
	Static content serving
	Dealing with JSON
	Authentication
	Favicon

	Advanced
	Set aliases to page handlers
	RESTful-style dispatching
	Error handling
	Streaming the response body
	Response timeouts
	Deal with signals
	Securing your server
	Multiple HTTP servers support
	WSGI support
	WebSocket support
	Database support
	HTML Templating support
	Testing your application

	Configure
	Architecture
	Declaration
	Namespaces

	Extend
	Server-wide functions
	Per-request functions
	Tailored dispatchers
	Request body processors

	Deploy
	Run as a daemon
	Run as a different user
	PID files
	Systemd socket activation
	Control via Supervisord
	SSL support
	WSGI servers
	Virtual Hosting
	Reverse-proxying

	Support
	I have a question
	I have found a bug
	I have a feature request
	I want to converse

	Contribute
	StackOverflow
	Filing Bug Reports
	Fixing Bugs
	Writing Pull Requests

	Testing
	Glossary
	History
	v10.0.0
	v9.0.0
	v8.9.1
	v8.9.0
	v8.8.0
	v8.7.0
	v8.6.0
	v8.5.0
	v8.4.0
	v8.3.1
	v8.3.0
	v8.2.0
	v8.1.3
	v8.1.2
	v8.1.1
	v8.1.0
	v8.0.1
	v8.0.0
	7.1.0
	7.0.0
	6.2.1
	6.2.0
	6.1.1
	6.1.0
	6.0.2
	6.0.1
	6.0.0
	5.6.0
	5.5.0
	5.4.0
	5.3.0
	5.2.0
	5.1.0
	5.0.1
	5.0.0
	4.0.0
	3.8.2
	3.8.0
	3.7.0
	3.6.0
	3.5.0
	3.4.0
	3.3.0

